如何通过Python(pandas)中的列中的事件对Dataframe进行排序

时间:2016-04-04 12:31:06

标签: python sorting pandas dataframe

我正在尝试使用python中的pandas从我的数据(化学物质和蛋白质之间的分数)创建数据帧。

我希望我的数据帧首先显示出现次数最多的蛋白质,所以我之前对数据进行了排序。但是当我创建数据帧时,它没有得到预期的结果。

以下是我的数据示例:

chemicals   prots   scores
CID000000006    10116.ENSRNOP00000003921    196
CID000000051    10116.ENSRNOP00000003921    246
CID000000085    10116.ENSRNOP00000003921    196
CID000000119    10116.ENSRNOP00000003921    247
CID000000134    10116.ENSRNOP00000008952    159
CID000000135    10116.ENSRNOP00000008952    157
CID000000174    10116.ENSRNOP00000008952    439
CID000000175    10116.ENSRNOP00000001021    858
CID000000177    10116.ENSRNOP00000004027    760

如您所见,“10116.ENSRNOP00000003921”是我数据中出现次数最多的蛋白质。

所以我希望得到类似的东西:

             10116.ENSRNOP00000003921     10116.ENSRNOP00000008952  
CID000000006   196                 
CID000000051   246 
CID000000085   196 
CID000000119   247 
CID000000134                                  159   
CID000000135                                  157   
CID000000174                                  439

这是我的代码:

import pandas as pd

df_rat= pd.read_csv("dt_matrix_rat.csv",sep="\t", header=True)
df_rat.columns = ['chemicals','proteins','scores']
df_rat1 = df_rat.pivot(index='chemicals', columns='proteins', values='scores')

df_rat1.to_csv("rat_matrix.csv", sep='\t', index=True  )

2 个答案:

答案 0 :(得分:0)

你可以使用@ jezrael的解决方案,也可以这样做(非常相似):

In [136]: df
Out[136]:
      chemicals                     prots  scores
0  CID000000006  10116.ENSRNOP00000003921     196
1  CID000000051  10116.ENSRNOP00000003921     246
2  CID000000085  10116.ENSRNOP00000003921     196
3  CID000000119  10116.ENSRNOP00000003921     247
4  CID000000134  10116.ENSRNOP00000008952     159
5  CID000000135  10116.ENSRNOP00000008952     157
6  CID000000174  10116.ENSRNOP00000008952     439
7  CID000000175  10116.ENSRNOP00000001021     858
8  CID000000177  10116.ENSRNOP00000004027     760

准备正确的订单

In [169]: df.groupby('prots').sum().sort('scores', ascending=False)
Out[169]:
                          scores
prots
10116.ENSRNOP00000003921     885
10116.ENSRNOP00000001021     858
10116.ENSRNOP00000004027     760
10116.ENSRNOP00000008952     755

准备已排序列的列表(对于旧版本的pandas)使用.sort()而不是.sort_values()

In [170]: cols = df.groupby('prots').sum().sort_values(by='scores', ascending=False).index

In [171]: cols
Out[171]:
Index(['10116.ENSRNOP00000003921', '10116.ENSRNOP00000001021',
       '10116.ENSRNOP00000004027', '10116.ENSRNOP00000008952'],
      dtype='object', name='prots')

以正确的顺序旋转并设置列:

In [175]: df_rat1 = df.pivot(index='chemicals', columns='prots', values='scores').fillna('')

In [176]: df_rat1 = df_rat1[cols]

In [177]: df_rat1
Out[177]:
prots        10116.ENSRNOP00000003921 10116.ENSRNOP00000001021 10116.ENSRNOP00000004027 10116.ENSRNOP00000008952
chemicals
CID000000006                      196
CID000000051                      246
CID000000085                      196
CID000000119                      247
CID000000134                                                                                                 159
CID000000135                                                                                                 157
CID000000174                                                                                                 439
CID000000175                                               858
CID000000177                                                                        760

答案 1 :(得分:0)

我认为您需要sort_values notnull sum并获得cols的索引。 Lasy使用subset

df1 = df.pivot(index='chemicals', columns='proteins', values='scores')

cols = df1.notnull().sum(axis=0).sort_values(ascending=False).index
print cols
Index([u'10116.ENSRNOP00000003921', u'10116.ENSRNOP00000008952',
       u'10116.ENSRNOP00000004027', u'10116.ENSRNOP00000001021'],
      dtype='object', name=u'proteins')

print df1[cols]
proteins      10116.ENSRNOP00000003921  10116.ENSRNOP00000008952  \
chemicals                                                          
CID000000006                     196.0                       NaN   
CID000000051                     246.0                       NaN   
CID000000085                     196.0                       NaN   
CID000000119                     247.0                       NaN   
CID000000134                       NaN                     159.0   
CID000000135                       NaN                     157.0   
CID000000174                       NaN                     439.0   
CID000000175                       NaN                       NaN   
CID000000177                       NaN                       NaN   

proteins      10116.ENSRNOP00000004027  10116.ENSRNOP00000001021  
chemicals                                                         
CID000000006                       NaN                       NaN  
CID000000051                       NaN                       NaN  
CID000000085                       NaN                       NaN  
CID000000119                       NaN                       NaN  
CID000000134                       NaN                       NaN  
CID000000135                       NaN                       NaN  
CID000000174                       NaN                       NaN  
CID000000175                       NaN                     858.0  
CID000000177                     760.0                       NaN  

reindex_axis

print df1.reindex_axis(cols, axis=1)
proteins      10116.ENSRNOP00000003921  10116.ENSRNOP00000008952  \
chemicals                                                          
CID000000006                     196.0                       NaN   
CID000000051                     246.0                       NaN   
CID000000085                     196.0                       NaN   
CID000000119                     247.0                       NaN   
CID000000134                       NaN                     159.0   
CID000000135                       NaN                     157.0   
CID000000174                       NaN                     439.0   
CID000000175                       NaN                       NaN   
CID000000177                       NaN                       NaN   

proteins      10116.ENSRNOP00000004027  10116.ENSRNOP00000001021  
chemicals                                                         
CID000000006                       NaN                       NaN  
CID000000051                       NaN                       NaN  
CID000000085                       NaN                       NaN  
CID000000119                       NaN                       NaN  
CID000000134                       NaN                       NaN  
CID000000135                       NaN                       NaN  
CID000000174                       NaN                       NaN  
CID000000175                       NaN                     858.0  
CID000000177                     760.0                       NaN