确定2D阵列中最长连续值范围的最快方法

时间:2016-04-02 10:20:34

标签: python arrays sorting matrix dataset

问题

让我们假设我们正在使用大型数据集,为了简单起见,我们在这个问题中使用了这个较小的数据集:

dataset = [["PLANT", 4,11],
           ["PLANT", 4,12],
           ["PLANT", 34,4],
           ["PLANT", 6,5],
           ["PLANT", 54,45],
           ["ANIMAL", 5,76],
           ["ANIMAL", 7,33],
           ["Animal", 11,1]]

我们想找出哪个列具有最长的连续值范围,哪个是找出最快的方法,哪个是最佳列?

天真的方法

我发现它很快可以按每列

进行分类
sortedDatasets = []
for i in range(1,len(dataset[0]):
    sortedDatasets.append(sorted(dataset,key=lambda x: x[i]))

但是这里出现了滞后部分:我们可以从这里继续为每个已排序的数据集做一个for loop,并计算连续的元素,但是当处理for loops时,python非常慢。

现在我的问题:是否有比这种天真的方法更快的方法,甚至可能还有这些2D容器的内置函数?

更新

更准确地说,范围的含义可以用这个伪算法来描述 - 这包括递增current value == next value

if nextValue > current Value +1: 
     {reset counter} 
else: 
     {increment counter}

1 个答案:

答案 0 :(得分:5)

您可以使用groupby以合理的效率执行此操作。我将分阶段进行此操作,以便您了解它的工作原理。

from itertools import groupby

dataset = [
    ["PLANT", 4, 11],
    ["PLANT", 4, 12],
    ["PLANT", 34, 4],
    ["PLANT", 6, 5],
    ["PLANT", 54, 45],
    ["ANIMAL", 5, 76],
    ["ANIMAL", 7, 33],
    ["ANIMAL", 11, 1],
]

# Get numeric columns & sort them in-place
sorted_columns = [sorted(col) for col in zip(*dataset)[1:]]
print sorted_columns
print

# Check if tuple `t` consists of consecutive numbers
keyfunc = lambda t: t[1] == t[0] + 1

# Search for runs of consecutive numbers in each column
for col in sorted_columns:
    #Create tuples of adjacent pairs of numbers in this column
    pairs = zip(col, col[1:])
    print pairs
    for k,g in groupby(pairs, key=keyfunc):
        print k, list(g)
    print

<强>输出

[[4, 4, 5, 6, 7, 11, 34, 54], [1, 4, 5, 11, 12, 33, 45, 76]]

[(4, 4), (4, 5), (5, 6), (6, 7), (7, 11), (11, 34), (34, 54)]
False [(4, 4)]
True [(4, 5), (5, 6), (6, 7)]
False [(7, 11), (11, 34), (34, 54)]

[(1, 4), (4, 5), (5, 11), (11, 12), (12, 33), (33, 45), (45, 76)]
False [(1, 4)]
True [(4, 5)]
False [(5, 11)]
True [(11, 12)]
False [(12, 33), (33, 45), (45, 76)]

现在,要攻击您的实际问题:

from itertools import groupby

dataset = [
    ["PLANT", 4, 11],
    ["PLANT", 4, 12],
    ["PLANT", 34, 4],
    ["PLANT", 6, 5],
    ["PLANT", 54, 45],
    ["ANIMAL", 5, 76],
    ["ANIMAL", 7, 33],
    ["ANIMAL", 11, 1],
]

# Get numeric columns & sort them in-place
sorted_columns = [sorted(col) for col in zip(*dataset)[1:]]

# Check if tuple `t` consists of consecutive numbers
keyfunc = lambda t: t[1] == t[0] + 1

#Search for the longest run of consecutive numbers in each column
runs = []
for i, col in enumerate(sorted_columns, 1):
    pairs = zip(col, col[1:])
    m = max(len(list(g)) for k,g in groupby(pairs, key=keyfunc) if k)
    runs.append((m, i))

print runs
#Print the highest run length found and the column it was found in
print max(runs)

<强>输出

[(3, 1), (1, 2)]
(3, 1)

FWIW,这可以压缩成一行。它更有效率,因为它使用了几个生成器表达式而不是列表推导,但它不是特别易读:

print max((max(len(list(g)) 
    for k,g in groupby(zip(col, col[1:]), key=lambda t: t[1] == t[0] + 1) if k), i)
        for i, col in enumerate((sorted(col) for col in zip(*dataset)[1:]), 1))

更新

我们可以通过一些小的改动来处理你的新的连续序列定义。

首先,如果排序列中相邻数字对之间的差异为&lt; = 1,我们需要一个返回True的键函数。

def keyfunc(t):
    return t[1] - t[0] <= 1

而不是采用与该关键函数匹配的序列的长度,我们现在做一些简单的算术来查看序列中值范围的大小。

def runlen(seq):
    return 1 + seq[-1][1] - seq[0][0]

全部放在一起:

def keyfunc(t):
    return t[1] - t[0] <= 1

def runlen(seq):
    return 1 + seq[-1][1] - seq[0][0]

# Get numeric columns & sort them in-place
sorted_columns = [sorted(col) for col in zip(*dataset)[1:]]

#Search for the longest run of consecutive numbers in each column
runs = []
for i, col in enumerate(sorted_columns, 1):
    pairs = zip(col, col[1:])
    m = max(runlen(list(g)) for k,g in groupby(pairs, key=keyfunc) if k)
    runs.append((m, i))

print runs
#Print the highest run length found and the column it was found in
print max(runs)

更新2

如评论中所述,max如果其arg为空序列则会引发ValueError。处理它的一种简单方法是将max调用包装在try..except块中。如果异常很少发生,这非常有效,try..except实际上比异常if...else逻辑更快,但不会引发异常。所以我们可以做这样的事情:

run = (runlen(list(g)) for k,g in groupby(pairs, key=keyfunc) if k)
try:
    m = max(run)
except ValueError:
    m = 0
runs.append((m, i))

但如果这种异常经常发生,那么使用其他方法会更好。

这是一个使用完全成熟的生成器函数find_runs代替生成器表达式的新版本。在find_runs开始处理列数据之前,yield只需max为零,因此runlen将始终至少有一个要处理的值。我已经内联runs计算以节省额外函数调用的开销。此重构还可以更轻松地在列表解析中构建from itertools import groupby dataset = [ ["PLANT", 4, 11, 3], ["PLANT", 4, 12, 5], ["PLANT", 34, 4, 7], ["PLANT", 6, 5, 9], ["PLANT", 54, 45, 11], ["ANIMAL", 5, 76, 13], ["ANIMAL", 7, 33, 15], ["ANIMAL", 11, 1, 17], ] def keyfunc(t): return t[1] - t[0] <= 1 def find_runs(col): pairs = zip(col, col[1:]) #This stops `max` from choking if we don't find any runs yield 0 for k, g in groupby(pairs, key=keyfunc): if k: #Determine run length seq = list(g) yield 1 + seq[-1][1] - seq[0][0] # Get numeric columns & sort them in-place sorted_columns = [sorted(col) for col in zip(*dataset)[1:]] #Search for the longest run of consecutive numbers in each column runs = [(max(find_runs(col)), i) for i, col in enumerate(sorted_columns, 1)] print runs #Print the highest run length found and the column it was found in print max(runs) 列表。

[(4, 1), (2, 2), (0, 3)]
(4, 1)

<强>输出

 String from = intent.getStringExtra("from");
        if ("ActivityB".equals(from)) {....}