对于simpl
s有什么类似策略Program Fixpoint
?
特别是,如何证明以下琐碎的陈述?
Program Fixpoint bla (n:nat) {measure n} :=
match n with
| 0 => 0
| S n' => S (bla n')
end.
Lemma obvious: forall n, bla n = n.
induction n. reflexivity.
(* I'm stuck here. For a normal fixpoint, I could for instance use
simpl. rewrite IHn. reflexivity. But here, I couldn't find a tactic
transforming bla (S n) to S (bla n).*)
显然,这个玩具示例不需要Program Fixpoint
,但我在一个更复杂的设置中面临同样的问题,我需要手动证明Program Fixpoint
的终止。
答案 0 :(得分:4)
我不习惯使用Program
,所以可能是更好的解决方案,但这是我通过展开bla
提出的,看到它是内部定义的Fix_sub
并使用SearchAbout Fix_sub
查看有关该函数的定理。
Lemma obvious: forall n, bla n = n.
Proof.
intro n ; induction n.
reflexivity.
unfold bla ; rewrite fix_sub_eq ; simpl ; fold (bla n).
rewrite IHn ; reflexivity.
(* This can probably be automated using Ltac *)
intros x f g Heq.
destruct x.
reflexivity.
f_equal ; apply Heq.
Qed.
在您的现实生活中,您可能希望引入缩小词条,这样您就不必每次都做同样的工作。 E.g:
Lemma blaS_red : forall n, bla (S n) = S (bla n).
Proof.
intro n.
unfold bla ; rewrite fix_sub_eq ; simpl ; fold (bla n).
reflexivity.
(* This can probably be automated using Ltac *)
intros x f g Heq.
destruct x.
reflexivity.
f_equal ; apply Heq.
Qed.
这样,下次有bla (S _)
时,您就可以rewrite blaS_red
。