在每月POSIX数据集中使用年数

时间:2016-03-29 14:59:40

标签: r ggplot2 xts

我使用来自大阿尔伯克基地区的几个气象站的月度气候数据,我已经以机场数据的这个子集为例,我最终会将这个相同的流程应用到所有地点。有近500个月的数据可用,但我已经包括了前30个。

> head(ABQ, 30)
                                STATION_NAME       DATE CLDD
9698 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-05-01  449
9699 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-06-01 1335
9700 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-07-01 2330
9701 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-08-01 2269
9702 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-09-01 1247
9703 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1945-10-01   13
9709 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-04-01   62
9710 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-05-01  251
9711 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-06-01 2097
9712 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-07-01 2303
9713 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-08-01 1889
9714 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-09-01 1111
9715 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1946-10-01   23
9721 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-04-01    1
9722 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-05-01  611
9723 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-06-01 1273
9724 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-07-01 2636
9725 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-08-01 1892
9726 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-09-01 1265
9727 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1947-10-01  171
9733 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-04-01   91
9734 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-05-01  642
9735 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-06-01 1506
9736 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-07-01 2529
9737 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-08-01 2186
9738 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-09-01 1130
9739 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1948-10-01   13
9745 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1949-04-01   88
9746 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1949-05-01  304
9747 ALBUQUERQUE INTERNATIONAL AIRPORT NM US 1949-06-01 1477

我想调用ABQ $ CLDD的年度总和并将该值应用于ggplot()...这样的事情

    CLDD_yr <- apply.yearly(ABQ$DATE, sum(CLDD))
    p <- ggplot(CLDD_yr, aes(YEAR, CLDD_yr)),
         + stat_smooth(method = "lm", formula = y~x + I(x^2), size = 1)

我知道我在调用我认为的数据的某个地方犯了一个错误,但我似乎无法解决这个问题。

DATE列是POSIX时间,如此处所示

> class(ABQ$DATE)
[1] "POSIXlt" "POSIXt" 

编辑: 每个coffienjunkies评论

也许新的df是解决这个问题的最好方法,因为我需要以相同的方式查看多个位置的数据

> stations
      unique(Bernalillo_data$STATION_NAME)
1  ALBUQUERQUE INTERNATIONAL AIRPORT NM US
2            PETROGLYPH NATIONAL MON NM US
3                        SANDIA PARK NM US
4                    ALBUQUERQUE VLY NM US
5           ALBUQUERQUE FOOTHILLS NE NM US
6              SANDIA RANGER STATION NM US
7                       SANDIA CREST NM US
8                 LA MADERA SKI AREA NM US
9                    NETHERWOOD PARK NM US
10                   EXPERIMENT FARM NM US
11                      KIRTLAND AFB NM US

也许新的DF应该像

header <-  station_name    Year    CLDD_sum
从长远来看,这会使分析变得更简单。

2 个答案:

答案 0 :(得分:2)

试试这个,

from django.conf.urls import url, import

请注意,您必须安装require(data.table) setDT(ABQ) ABQ[, CLDD_yr := sum(CLDD), by = year(DATE)] # Required because data.table and ggplot don't play nice. setDF(ABQ) p <- ggplot(ABQ, aes(YEAR, CLDD_yr)), + stat_smooth(method = "lm", formula = y~x + I(x^2), size = 1) 。请注意,这将为每行创建摘要统计信息,因此您可能会在ggplot中重叠几个点。如果您不想要,可以尝试,

data.table

希望这有帮助。

答案 1 :(得分:1)

我认为您可以使用许多方法,但某些聚合必须在某些时候发生。以下是两条建议:

library(dplyr)
library(ggplot2)
df$year <- df$DATE$year
df$DATE <- as.POSIXct(df$DATE) # dplyr doesn't play well with POSIXlt
df_yr <- df %>% group_by(year) %>% summarise(cldd_yr = sum(CLDD))

这会产生:

Source: local data frame [5 x 2]

   year cldd_yr
  (chr)   (int)
1  1945    7643
2  1946    7736
3  1947    7849
4  1948    8097
5  1949    1869

您可以与ggplot结合使用。对于多个站,只需将站添加为分组变量。例如,df_yr <- df %>% group_by(year, station) %>% summarise(cldd_yr = sum(CLDD))将为您提供所有年份和电台的摘要,前提是station是您的标识符的调用方式。

如果您真的不想使用新的数据框,但可以添加列,请尝试

 df <- group_by(df, year) %>% mutate(yr.sum = sum(CLDD))

yr.sum中,您有每年的总和。请注意,此值正在重复,您必须确保ggplot正确使用它。我建议使用第一种方法,因为它可能更有效,更透明。