列表中的平均时间值

时间:2010-09-01 10:41:40

标签: python

我想计算列表中日期之间的平均时间值。 虽然以下效果很好,但我想知道是否有更聪明的方法?

delta = lambda last, next: (next - last).seconds + (next - last).days * 86400   
total = sum(delta(items[i-1], items[i]) for i in range(1, len(items)))
average = total / (len(items) - 1)

3 个答案:

答案 0 :(得分:41)

顺便说一下,如果你有一个timedeltas或datetimes列表,你为什么自己做数学呢?

datetimes = [ ... ]

# subtracting datetimes gives timedeltas
timedeltas = [datetimes[i-1]-datetimes[i] for i in range(1, len(datetimes))]

# giving datetime.timedelta(0) as the start value makes sum work on tds 
average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(timedeltas)

答案 1 :(得分:3)

试试这个:

from itertools import izip

def average(items):   
    total = sum((next - last).seconds + (next - last).days * 86400
                for next, last in izip(items[1:], items))
     return total / (len(items) - 1)

在我看来,这样做更具可读性。对数学上较不具有数学倾向的读者的评论可能有助于解释您如何计算每个delta。对于它的价值,一个生成器表达式对我所看到的任何事物都有最少(并且我认为最慢)的操作码指令。

  # The way in your question compiles to....
  3           0 LOAD_CONST               1 (<code object <lambda> at 0xb7760ec0, file 

"scratch.py", line 3>)
              3 MAKE_FUNCTION            0
              6 STORE_DEREF              1 (delta)

  4           9 LOAD_GLOBAL              0 (sum)
             12 LOAD_CLOSURE             0 (items)
             15 LOAD_CLOSURE             1 (delta)
             18 BUILD_TUPLE              2
             21 LOAD_CONST               2 (<code object <genexpr> at 0xb77c0a40, file "scratch.py", line 4>)
             24 MAKE_CLOSURE             0
             27 LOAD_GLOBAL              1 (range)
             30 LOAD_CONST               3 (1)
             33 LOAD_GLOBAL              2 (len)
             36 LOAD_DEREF               0 (items)
             39 CALL_FUNCTION            1
             42 CALL_FUNCTION            2
             45 GET_ITER            
             46 CALL_FUNCTION            1
             49 CALL_FUNCTION            1
             52 STORE_FAST               1 (total)

  5          55 LOAD_FAST                1 (total)
             58 LOAD_GLOBAL              2 (len)
             61 LOAD_DEREF               0 (items)
             64 CALL_FUNCTION            1
             67 LOAD_CONST               3 (1)
             70 BINARY_SUBTRACT     
             71 BINARY_DIVIDE       
             72 STORE_FAST               2 (average)
             75 LOAD_CONST               0 (None)
             78 RETURN_VALUE        
None
#
#doing it with just one generator expression and itertools...

  4           0 LOAD_GLOBAL              0 (sum)
              3 LOAD_CONST               1 (<code object <genexpr> at 0xb777eec0, file "scratch.py", line 4>)
              6 MAKE_FUNCTION            0

  5           9 LOAD_GLOBAL              1 (izip)
             12 LOAD_FAST                0 (items)
             15 LOAD_CONST               2 (1)
             18 SLICE+1             
             19 LOAD_FAST                0 (items)
             22 CALL_FUNCTION            2
             25 GET_ITER            
             26 CALL_FUNCTION            1
             29 CALL_FUNCTION            1
             32 STORE_FAST               1 (total)

  6          35 LOAD_FAST                1 (total)
             38 LOAD_GLOBAL              2 (len)
             41 LOAD_FAST                0 (items)
             44 CALL_FUNCTION            1
             47 LOAD_CONST               2 (1)
             50 BINARY_SUBTRACT     
             51 BINARY_DIVIDE       
             52 RETURN_VALUE        
None

特别是,丢弃lambda允许我们避免创建一个闭包,构建一个元组并加载两个闭包。五种函数都可以被调用。当然,这种对性能的关注有点荒谬,但很高兴知道幕后发生了什么。最重要的是可读性,我认为这样做也很重要。

答案 2 :(得分:0)

sum(timedelta_list ,datetime.timedelta())