将二维数组转换为一维数组很容易,但如何将超过2维的多维数组转换为一维数组呢?例如,假设我有int [5] [5] [5] x和int [125] y,我想将x [3] [4] [2]的值放在y的正确位置?
希望这是有道理的。
答案 0 :(得分:34)
这里有几个技术上很好的答案,但这里有一种更直观的方式来理解它......
好的,所以你知道如何从一维案例转向二维案例。
1-D阵列如下所示:
int [5] :
+-----+-----+-----+-----+-----+
| 0 | 1 | 2 | 3 | 4 |
| | | | | |
+-----+-----+-----+-----+-----+
二维阵列看起来像这样:
int [5][5] :
+-----+-----+-----+-----+-----+
| 0,0 | 0,1 | 0,2 | 0,3 | 0,4 |
| | | | | |
+-----+-----+-----+-----+-----+
| 1,0 | 1,1 | 1,2 | 1,3 | 1,4 |
| | | | | |
+-----+-----+-----+-----+-----+
| 2,0 | 2,1 | 2,2 | 2,3 | 2,4 |
| | | | | |
+-----+-----+-----+-----+-----+
| 3,0 | 3,1 | 3,2 | 3,3 | 3,4 |
| | | | | |
+-----+-----+-----+-----+-----+
| 4,0 | 4,1 | 4,2 | 4,3 | 4,4 |
| | | | | |
+-----+-----+-----+-----+-----+
您可以将转换图片转换为相应的1-D数组,如下所示:
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+- - -
| 0,0 | 0,1 | 0,2 | 0,3 | 0,4 | 1,0 | 1,1 | 1,2 | 1,3 | 1,4 | etc.
| | | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+- - -
vvv
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+- - -
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | etc.
| | | | | | | | | | |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+- - -
但另一种思考方式是想象原始数组,但重新标记 - 就像这样:
int [5][5] :
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 0,0 | 0,1 | 0,2 | 0,3 | 0,4 | | 0 | 1 | 2 | 3 | 4 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 1,0 | 1,1 | 1,2 | 1,3 | 1,4 | | 5 | 6 | 7 | 8 | 9 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 2,0 | 2,1 | 2,2 | 2,3 | 2,4 | => | 10 | 11 | 12 | 13 | 14 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 3,0 | 3,1 | 3,2 | 3,3 | 3,4 | | 15 | 16 | 17 | 18 | 19 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 4,0 | 4,1 | 4,2 | 4,3 | 4,4 | | 20 | 21 | 22 | 23 | 24 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
2-D array index [i][j] => 1-D array index [i*5 + j]
......如果你这样思考,三维情况就是遵循相同的原则(等等,对于更高的维度 - 它变得越来越难以想象!):
int [5][5][5] :
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
|+-----+-----+-----+-----+-----+ |+-----+-----+-----+-----+-----+
||+-----+-----+-----+-----+-----+ ||+-----+-----+-----+-----+-----+
|||+-----+-----+-----+-----+-----+ |||+-----+-----+-----+-----+-----+
||||1,0,0|1,0,1|1,0,2|1,0,3|1,0,4| |||| 25 | 26 | 27 | 28 | 29 |
|||| +-----+-----+-----+-----+-----+ |||| +-----+-----+-----+-----+-----+
|||+---|0,0,0|0,0,1|0,0,2|0,0,3|0,0,4| |||+---| 0 | 1 | 2 | 3 | 4 |
||||1,1| | | | | | |||| 30| | | | | |
|||| +-----+-----+-----+-----+-----+ |||| +-----+-----+-----+-----+-----+
|||+---|0,1,0|0,1,1|0,1,2|0,1,3|0,1,4| |||+---| 5 | 6 | 7 | 8 | 9 |
||||1,2| | | | | | |||| 35| | | | | |
|||| +-----+-----+-----+-----+-----+ |||| +-----+-----+-----+-----+-----+
|||+---|0,2,0|0,2,1|0,2,2|0,2,3|0,2,4|=>|||+---| 10 | 11 | 12 | 13 | 14 |
||||1,3| | | | | | |||| 40| | | | | |
|||| +-----+-----+-----+-----+-----+ |||| +-----+-----+-----+-----+-----+
+||+---|0,3,0|0,3,1|0,3,2|0,3,3|0,3,4| +||+---| 15 | 16 | 17 | 18 | 19 |
+||1,4| | | | | | +|| 45| | | | | |
+| +-----+-----+-----+-----+-----+ +| +-----+-----+-----+-----+-----+
+---|0,4,0|0,4,1|0,4,2|0,4,3|0,4,4| +---| 20 | 21 | 22 | 23 | 24 |
| | | | | | | | | | | |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
3-D array index [i][j][k] => 1-D array index [i*5*5 + j*5 + k]
答案 1 :(得分:6)
m0,m1,.. are dimensions
A(i,j,k,...) -> A0[i + j*m0 + k*m0*m1 + ...]
和有用的C技巧:
double *A;
size_t m;
#define A(i,j) A[(i) + (j)*m];
答案 2 :(得分:2)
实际上有一种非常酷的方式可以考虑这个尚未发布的内容。
在最简单的情况下,您可以将X,Y,Z坐标想象为您创建的虚数系统中的数字。这些数字是XYZ编写的,因此您的示例[3] [4] [2]将写为:342
我们这些曾经常常在八进制和十六进制中思考的人习惯于认为这并不意味着三百四十几个,而是
三个64s,四个8s和两个1s
或
三个256,四个16和2个
这就是你想象中的数字系统需要做的事情,但是每个数字都是数组中相应边长度的基数,是下一个较低基数的倍数(除非没有,在这种情况下,1。此计算中不使用最后一个数组长度,而只是限制循环。此计算中的排序取决于您希望如何将边长转换为线性元素。
对于5x5x5阵列,这很容易:
25s | 5s | 1s * 3 | 4 | 2 ----+----+--- 75 + 20 + 2 = 97
其他基础可能更复杂,尤其是尺寸不均匀,但这只是思考问题的另一种方式。
这是一个非统一的565例子:
30s | 5s | 1s * 3 | 4 | 2 ----+----+--- 90 + 20 + 2 = 102
答案 3 :(得分:1)
您可以使用不同的方法将多维数组映射到线性数组。问题是你必须选择一个约定。让我们按照以下惯例。第一个索引指定块容器,第二个索引指定前一个容器中的块,最后第三个索引是块内的偏移量。您可以轻松地对多维进行概括,但在本示例中,请将其保持为3:
#include <cstddef>
std::size_t linear_index
(std::size_t f,
std::size_t s,
std::size_t t,
std::size_t f_width,
std::size_t s_width)
{
return (f*f_width + s)*s_width + t;
}
答案 4 :(得分:-1)
您可以在C#中执行以下操作。
public class ArrayIndexer
{
private readonly int[] _bounds;
private readonly int[] _sum;
public ArrayIndexer(params int[] bounds)
{
_bounds = bounds;
// Pre-compute bounds sums for speed.
_sum = new int[bounds.Length - 1];
for (int i = 1, sum = _bounds[i - 1]; i < _bounds.Length; ++i, sum *= _bounds[i - 1])
_sum[i-1] = sum;
}
public T Index<T>(T[] array, params int[] indices)
{
if (indices.Length != _bounds.Length)
throw new ArgumentException("There should be as many indices as bounds", "indices");
var index = indices[0];
for (int i = 1, sum = _bounds[i - 1]; i < indices.Length; ++i, sum *= _bounds[i - 1])
index += sum * indices[i];
return array[index];
}
public T FastIndex<T>(T[] array, params int[] indices)
{
if (indices.Length != _bounds.Length)
throw new ArgumentException("There should be as many indices as bounds", "indices");
var index = indices[0];
for (int i = 1; i < indices.Length; ++i)
index += _sum[i-1] * indices[i];
return array[index];
}
}
或者转换为n维数组。
public static class ArrayExtensions
{
public static Array CreateArray<T>(this T[] array1d, params int[] bounds)
{
var arrayNd = Array.CreateInstance(typeof(T), bounds);
var indices = new int[bounds.Length];
for (var i = 0; i < array1d.Length; ++i)
{
arrayNd.SetValue(array1d[i], indices);
for (int j = 0; j < bounds.Length; ++j)
{
if (++indices[j] < bounds[j])
break;
indices[j] = 0;
}
}
return arrayNd;
}
}
并进行测试。
int[] array3d =
new[]
{
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15,
16, 17, 18, 19,
20, 21, 22, 23
};
var copied3d = (int[, ,])array3d.CreateArray(4, 3, 2);
var indexer3d = new ArrayIndexer(4, 3, 2);
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 3; ++j)
{
for (int k = 0; k < 2; ++k)
{
var x = indexer3d.FastIndex(array3d, i, j, k);
var y = copied3d[i, j, k];
Debug.Print("Array[{0},{1},{2}] = {3} and {4} match = {5}", i, j, k, x, y, x == y);
}
}
}