我将新数据框附加到旧数据框中:
import numpy as np
import pandas as pd
from pandas import Series
from pandas import DataFrame
df1 = DataFrame(np.arange(3.).reshape((1, 3)), columns=list('dcb'), index=['Ohio'])
df2 = DataFrame(np.arange(3.).reshape((1, 3)), columns=list('bdc'), index=['Utah'])
print df1
print df2
print pd.concat([df1, df2])
然后我得到了这样的结果:
d c b
Ohio 0.0 1.0 2.0
b d c
Utah 0.0 1.0 2.0
b c d
Ohio 2.0 1.0 0.0
Utah 0.0 2.0 1.0
但是我希望结果中的列不被排序为' bcd'但作为起源' dcb'像:
d c b
Ohio 0.0 1.0 2.0
Utah 1.0 2.0 0.0
答案 0 :(得分:3)
使用join_axes
参数:
pd.concat([df1, df2], join_axes=[df1.columns])
答案 1 :(得分:2)
您可以将原始订单存储在变量中,然后在合并后重新应用:
df1 = DataFrame(np.arange(3.).reshape((1, 3)), columns=list('dcb'), index=['Ohio'])
orig_column_order = df1.columns
df2 = DataFrame(np.arange(3.).reshape((1, 3)), columns=list('bdc'), index=['Utah'])
combined = pd.concat([df1, df2], keys=list('dbc'))
combined = combined[orig_column_order]
print(df1)
print(df2)
print(combined)
给出:
d c b
Ohio 0.0 1.0 2.0
b d c
Utah 0.0 1.0 2.0
d c b
d Ohio 0.0 1.0 2.0
b Utah 1.0 2.0 0.0