我正在运行kaggle_otto_nn.py
的{{1}} Keras
,后端为theano
。
在下面的第5行打印中,有些内容表示:
CNMeM启用初始大小:90.0%的内存,CuDNN不可用
我想知道,因为GPU设备是可检测到的,这个CuDNN not available
是否重要?我是否正确地在GPU上运行我的程序?或者它实际上没有在GPU上运行。
cliu@cliu-ubuntu:keras-examples$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=0.9 python kaggle_otto_nn.py
Using Theano backend.
/usr/local/lib/python2.7/dist-packages/Theano-0.8.0rc1-py2.7.egg/theano/tensor/signal/downsample.py:6: UserWarning: downsample module has been moved to the theano.tensor.signal.pool module.
"downsample module has been moved to the theano.tensor.signal.pool module.")
Using gpu device 0: Quadro K610M (CNMeM is enabled with initial size: 90.0% of memory, CuDNN not available)
Loading data...
9 classes
93 dims
Building model...
Training model...
Train on 52596 samples, validate on 9282 samples
Epoch 1/20
52596/52596 [==============================] - 6s - loss: 0.9420 - val_loss: 0.6269
Epoch 2/20
52596/52596 [==============================] - 6s - loss: 0.6955 - val_loss: 0.5817
...
Epoch 20/20
52596/52596 [==============================] - 6s - loss: 0.4866 - val_loss: 0.4819
Generating submission...
144368/144368 [==============================] - 1s
Wrote submission to file keras-otto.csv.
答案 0 :(得分:1)
cuDNN是NVidia的一个库,可以提高GPU上神经网络的性能。所以你的程序仍然可以在GPU上运行,但比安装了cuDNN时要慢得多。