我正在尝试创建一个缓慢变化的维度(类型2维度),并且在如何逻辑写出它时有点迷失。假设我们有一个格式为Person | Country | Department | Login Time
的源表。我想用Person | Country | Department | Eff Start time | Eff End Time
创建此维度表。
数据可能如下所示:
Person | Country | Department | Login Time
------------------------------------------
Bob | CANADA | Marketing | 2009-01-01
Bob | CANADA | Marketing | 2009-02-01
Bob | USA | Marketing | 2009-03-01
Bob | USA | Sales | 2009-04-01
Bob | MEX | Product | 2009-05-01
Bob | MEX | Product | 2009-06-01
Bob | MEX | Product | 2009-07-01
Bob | CANADA | Marketing | 2009-08-01
我想要的Type 2维度如下所示:
Person | Country | Department | Eff Start time | Eff End Time
------------------------------------------------------------------
Bob | CANADA | Marketing | 2009-01-01 | 2009-03-01
Bob | USA | Marketing | 2009-03-01 | 2009-04-01
Bob | USA | Sales | 2009-04-01 | 2009-05-01
Bob | MEX | Product | 2009-05-01 | 2009-08-01
Bob | CANADA | Marketing | 2009-08-01 | NULL
假设自2009-08-01
以来Bob的姓名,国家和部门尚未更新,因此保留为NULL
什么功能最适合这里?这是在Netezza上,它使用Postgres的味道。
显然GROUP BY
因为之后的相同分组而无法在此处工作(我在最后一行的Bob | CANADA | Marketing
中添加了以显示此内容。
修改
在Person,Country和Department上包含一个哈希列是有道理的,对吗?考虑使用
的逻辑SELECT PERSON, COUNTRY, DEPARTMENT
FROM table t1
where
person = person
AND t1.hash <> hash_function(person, country, department)
答案 0 :(得分:1)
create table so (
person varchar(32)
,country varchar(32)
,department varchar(32)
,login_time date
) distribute on random;
insert into so values ('Bob','CANADA','Marketing','2009-01-01');
insert into so values ('Bob','CANADA','Marketing','2009-02-01');
insert into so values ('Bob','USA','Marketing','2009-03-01');
insert into so values ('Bob','USA','Sales','2009-04-01');
insert into so values ('Bob','MEX','Product','2009-05-01');
insert into so values ('Bob','MEX','Product','2009-06-01');
insert into so values ('Bob','MEX','Product','2009-07-01');
insert into so values ('Bob','CANADA','Marketing','2009-08-01');
/* ************************************************************************** */
with prm as ( --Create an ordinal primary key.
select
*
,row_number() over (
partition by person
order by login_time
) rwn
from
so
), chn as ( --Chain events to their previous and next event.
select
cur.rwn
,cur.person
,cur.country
,cur.department
,cur.login_time cur_login
,case
when
cur.country = prv.country
and cur.department = prv.department
then 1
else 0
end prv_equal
,case
when
(
cur.country = nxt.country
and cur.department = nxt.department
) or nxt.rwn is null --No next record should be equivalent to matching.
then 1
else 0
end nxt_equal
,case prv_equal
when 0 then cur_login
else null
end eff_login_start_sparse
,case
when eff_login_start_sparse is null
then max(eff_login_start_sparse) over (
partition by cur.person
order by rwn
rows unbounded preceding --The secret sauce.
)
else eff_login_start_sparse
end eff_login_start
,case nxt_equal
when 0 then cur_login
else null
end eff_login_end
from
prm cur
left outer join prm nxt on
cur.person = nxt.person
and cur.rwn + 1 = nxt.rwn
left outer join prm prv on
cur.person = prv.person
and cur.rwn - 1 = prv.rwn
), grp as ( --Group by login starts.
select
person
,country
,department
,eff_login_start
,max(eff_login_end) eff_login_end
from
chn
group by
person
,country
,department
,eff_login_start
), led as ( --Change the effective end to be the next start, if desired.
select
person
,country
,department
,eff_login_start
,case
when eff_login_end is null
then null
else
lead(eff_login_start) over (
partition by person
order by eff_login_start
)
end eff_login_end
from
grp
)
select * from led order by eff_login_start;
此代码返回下表。
PERSON | COUNTRY | DEPARTMENT | EFF_LOGIN_START | EFF_LOGIN_END
--------+---------+------------+-----------------+---------------
Bob | CANADA | Marketing | 2009-01-01 | 2009-03-01
Bob | USA | Marketing | 2009-03-01 | 2009-04-01
Bob | USA | Sales | 2009-04-01 | 2009-05-01
Bob | MEX | Product | 2009-05-01 | 2009-08-01
Bob | CANADA | Marketing | 2009-08-01 |
在过去的几年里,我必须解决这四五次问题,而忽略了正式写下来。我很高兴有机会这样做,所以这是一个很好的问题。
尝试这个时,我喜欢用矩阵形式写下问题。这是输入,假设所有值在SCD中都具有相同的键。
Cv | Ce
----|----
A | 10
A | 11
B | 14
C | 16
D | 18
D | 25
D | 34
A | 40
其中Cv是我们需要比较的值(同样,假设SCD的键值在此数据中相等;我们将在整个时间内对键值进行分区,因此它与解决方案)和Ce是事件时间。
首先,我们需要一个序数主键。我在表中指定了这个Ck。这将允许我们将表连接到自己以获取上一个和下一个事件。我将这些列称为Pk(上一个键),Nk(下一个键),Pv和Nv。
Cv | Ce | Ck | Pk | Pv | Nk | Nv |
----|----|----|----|----|----|----|
A | 10 | 1 | | | 2 | A |
A | 11 | 2 | 1 | A | 3 | B |
B | 14 | 3 | 2 | A | 4 | C |
C | 16 | 4 | 3 | B | 5 | D |
D | 18 | 5 | 4 | C | 6 | D |
D | 25 | 6 | 5 | D | 7 | D |
D | 34 | 7 | 6 | D | 8 | A |
A | 40 | 8 | 7 | D | | |
现在我们需要一些列来查看我们是否位于连续事件块的开头或结尾。我会称这些Pc和Nc为连续的。 Pc定义为Pv = Cv =&gt;真正。 1表示真,0表示假。 Nc的定义类似,除了null case默认为true(我们将在一分钟内看到原因)
Cv | Ce | Ck | Pk | Pv | Nk | Nv | Pc | Nc |
----|----|----|----|----|----|----|----|----|
A | 10 | 1 | | | 2 | A | 0 | 1 |
A | 11 | 2 | 1 | A | 3 | B | 1 | 0 |
B | 14 | 3 | 2 | A | 4 | C | 0 | 0 |
C | 16 | 4 | 3 | B | 5 | D | 0 | 0 |
D | 18 | 5 | 4 | C | 6 | D | 0 | 1 |
D | 25 | 6 | 5 | D | 7 | D | 1 | 1 |
D | 34 | 7 | 6 | D | 8 | A | 1 | 0 |
A | 40 | 8 | 7 | D | | | 0 | 1 |
现在你可以开始看看Pc,Nc的1,1组合是如何完全无用的记录。我们直观地知道这一点,因为第6行的Bob's Mex / Product组合在构建SCD时几乎是无用的信息。
所以让我们摆脱无用的信息。我将在这里添加两个新列:几乎完整的有效启动时间称为Sn,实际完成的有效结束时间称为Ee。当Pc为0时,Sn填充Ce,当Nc为0时,Ee填充Ce。
Cv | Ce | Ck | Pk | Pv | Nk | Nv | Pc | Nc | Sn | Ee |
----|----|----|----|----|----|----|----|----|----|----|
A | 10 | 1 | | | 2 | A | 0 | 1 | 10 | |
A | 11 | 2 | 1 | A | 3 | B | 1 | 0 | | 11 |
B | 14 | 3 | 2 | A | 4 | C | 0 | 0 | 14 | 14 |
C | 16 | 4 | 3 | B | 5 | D | 0 | 0 | 16 | 16 |
D | 18 | 5 | 4 | C | 6 | D | 0 | 1 | 18 | |
D | 25 | 6 | 5 | D | 7 | D | 1 | 1 | | |
D | 34 | 7 | 6 | D | 8 | A | 1 | 0 | | 34 |
A | 40 | 8 | 7 | D | | | 0 | 1 | 40 | |
这看起来非常接近,但我们仍然遇到无法按照Cv(人/国家/部门)分组的问题。我们需要的是Sn使用之前的Sn值填充所有这些空值。您可以在rwn < rwn
上将此表连接到自身并获得最大值,但我将变得懒惰并使用Netezza的分析函数和rows unbounded preceding
子句。这是我刚才描述的方法的捷径。因此,我们将创建另一个名为Es,efffective start的列,定义如下。
case
when Sn is null
then max(Sn) over (
partition by k --key value of the SCD
order by Ck
rows unbounded preceding
)
else Sn
end Es
根据这个定义,我们得到了这个。
Cv | Ce | Ck | Pk | Pv | Nk | Nv | Pc | Nc | Sn | Ee | Es |
----|----|----|----|----|----|----|----|----|----|----|----|
A | 10 | 1 | | | 2 | A | 0 | 1 | 10 | | 10 |
A | 11 | 2 | 1 | A | 3 | B | 1 | 0 | | 11 | 10 |
B | 14 | 3 | 2 | A | 4 | C | 0 | 0 | 14 | 14 | 14 |
C | 16 | 4 | 3 | B | 5 | D | 0 | 0 | 16 | 16 | 16 |
D | 18 | 5 | 4 | C | 6 | D | 0 | 1 | 18 | | 18 |
D | 25 | 6 | 5 | D | 7 | D | 1 | 1 | | | 18 |
D | 34 | 7 | 6 | D | 8 | A | 1 | 0 | | 34 | 18 |
A | 40 | 8 | 7 | D | | | 0 | 1 | 40 | | 40 |
其余的都是微不足道的。按Es分组并获取Ee的最大值以获得此表。
Cv | Es | Ee |
----|----|----|
A | 10 | 11 |
B | 14 | 14 |
C | 16 | 16 |
D | 18 | 34 |
A | 40 | |
如果要在下次启动时填充有效结束时间,请再次将表连接到自身或使用lead()
窗口函数来抓取它。