我使用HDF5编写了一个关于多标签分类的网络,这里是名为'auto_train.prototxt'的原型文件
float
这是train.sh
name: "multilabel_net"
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
hdf5_data_param {
source: "examples/corel5k/train.h5list"
batch_size: 50
shuffle: 1
}
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TEST
}
hdf5_data_param {
source: "examples/corel5k/test.h5list"
batch_size: 50
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "score"
type: "InnerProduct"
bottom: "fc7"
top: "score"
inner_product_param {
num_output: 260
}
}
layer {
name: "loss"
type: "SigmoidCrossEntropyLoss"
bottom: "score"
bottom: "label"
top: "loss"
}
layer {
name: "score"
type: "InnerProduct"
bottom: "fc7"
top: "score"
inner_product_param {
num_output: 260
}
include {
phase: TEST}
}
但是当我运行这个脚本时,它出了点问题
./build/tools/caffe train \ -solver examples/corel5k/auto_train.prototxt \ -weights examples/corel5k/bvlc_reference_caffenet.caffemodel
我不知道发生了什么,寻求帮助
答案 0 :(得分:6)
您对网络结构定义原型(a.k.a lib folder containing: Ab.jar, commons-codec-1.6.jar, commons-logging-1.1.1.jar, hamcrest-all-1.3.jar, httpclient-4.2.1.jar, httpclient-cache-4.2.1.jar, httpcore-4.2.1.jar, httpmime-4.2.1.jar, jgoodies-common.jar, jgoodies-forms.jar, joda-time-2.1.jar, json-20090211.jar, junit-4.11.jar, sanmoku-0.0.5.jar, sanmoku-feature-ex-0.0.1.jar
)与解算器定义原型(a.k.a train_val.prototxt
)混淆。
请参阅例如AlexNet example这两个不同的原型文件。
网络结构定义solver.prototxt
定义了网络结构,看起来就像您编写的train_val.prototxt
文件。
但是,您缺少定义优化过程的元参数的solver definition prototxt,auto_train.prototxt
。
在您的情况下,solver.prototxt
看起来像:
solver.prototxt
您可以在net: "examples/corel5k/auto_train.prototxt" # here is where you put the net structure file
test_iter: 1000
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/corel5k/my_auto_snapshots"
solver_mode: GPU
here和here中找到有关如何设置元参数的信息。
一旦你有一个合适的solver.protoxt
,你可以运行caffe:
solver.prototxt