caffe的prototxt错误,caffe.SolverParameter没有名为“name”的字段

时间:2016-03-16 08:31:15

标签: machine-learning neural-network deep-learning caffe

我使用HDF5编写了一个关于多标签分类的网络,这里是名为'auto_train.prototxt'的原型文件

float

这是train.sh

name: "multilabel_net"
layer {
         name: "data"
         type: "HDF5Data"
         top: "data"
         top: "label"
         include {
         phase: TRAIN
         }
         hdf5_data_param {
         source: "examples/corel5k/train.h5list"
         batch_size: 50
         shuffle: 1
         }
    }
    layer {
        name: "data"
        type: "HDF5Data"
        top: "data"
        top: "label"
        include {
        phase: TEST
 }
  hdf5_data_param {
    source: "examples/corel5k/test.h5list"
    batch_size: 50
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "norm2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "score"
  inner_product_param {
    num_output: 260
  }
}
layer {
  name: "loss"
  type: "SigmoidCrossEntropyLoss"
  bottom: "score"
  bottom: "label"
  top: "loss"
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "score"
  inner_product_param {
    num_output: 260
  }
  include {
    phase: TEST}
}

但是当我运行这个脚本时,它出了点问题

 ./build/tools/caffe train \
-solver examples/corel5k/auto_train.prototxt \
-weights examples/corel5k/bvlc_reference_caffenet.caffemodel

我不知道发生了什么,寻求帮助

1 个答案:

答案 0 :(得分:6)

您对网络结构定义原型(a.k.a lib folder containing: Ab.jar, commons-codec-1.6.jar, commons-logging-1.1.1.jar, hamcrest-all-1.3.jar, httpclient-4.2.1.jar, httpclient-cache-4.2.1.jar, httpcore-4.2.1.jar, httpmime-4.2.1.jar, jgoodies-common.jar, jgoodies-forms.jar, joda-time-2.1.jar, json-20090211.jar, junit-4.11.jar, sanmoku-0.0.5.jar, sanmoku-feature-ex-0.0.1.jar )与解算器定义原型(a.k.a train_val.prototxt)混淆。

请参阅例如AlexNet example这两个不同的原型文件。

网络结构定义solver.prototxt定义了网络结构,看起来就像您编写的train_val.prototxt文件。

但是,您缺少定义优化过程的元参数的solver definition prototxtauto_train.prototxt
在您的情况下,solver.prototxt看起来像:

solver.prototxt

您可以在net: "examples/corel5k/auto_train.prototxt" # here is where you put the net structure file test_iter: 1000 test_interval: 1000 base_lr: 0.01 lr_policy: "step" gamma: 0.1 stepsize: 100000 display: 20 max_iter: 450000 momentum: 0.9 weight_decay: 0.0005 snapshot: 10000 snapshot_prefix: "examples/corel5k/my_auto_snapshots" solver_mode: GPU herehere中找到有关如何设置元参数的信息。

一旦你有一个合适的solver.protoxt,你可以运行caffe:

solver.prototxt