我在Pacman的基本游戏中在Python 2.7.11中实现了minimax。 Pacman是最大化剂,并且一个或多个鬼(取决于测试布局)是最小化剂。
我必须实施minimax,以便可能 多个 最小化代理,以便它可以创建 n plies (深度)。例如,Ply 1将是每个幽灵轮流最小化其可能移动的终端状态效用,以及pacman轮流最大化鬼魂已经最小化的内容。从图形上看,ply 1看起来像这样:
如果我们将以下任意实用程序分配给绿色终端状态(从左到右):
-10, 5, 8, 4, -4, 20, -7, 17
Pacman应该返回-4
,然后向那个方向移动,根据该决定创建一个全新的minimax树。
首先,我的实现所需的变量和函数列表是有意义的:
# Stores everything about the current state of the game
gameState
# A globally defined depth that varies depending on the test cases.
# It could be as little as 1 or arbitrarily large
self.depth
# A locally defined depth that keeps track of how many plies deep I've gone in the tree
self.myDepth
# A function that assigns a numeric value as a utility for the current state
# How this is calculated is moot
self.evaluationFunction(gameState)
# Returns a list of legal actions for an agent
# agentIndex = 0 means Pacman, ghosts are >= 1
gameState.getLegalActions(agentIndex)
# Returns the successor game state after an agent takes an action
gameState.generateSuccessor(agentIndex, action)
# Returns the total number of agents in the game
gameState.getNumAgents()
# Returns whether or not the game state is a winning (terminal) state
gameState.isWin()
# Returns whether or not the game state is a losing (terminal) state
gameState.isLose()
这是我的实施:
"""
getAction takes a gameState and returns the optimal move for pacman,
assuming that the ghosts are optimal at minimizing his possibilities
"""
def getAction(self, gameState):
self.myDepth = 0
def miniMax(gameState):
if gameState.isWin() or gameState.isLose() or self.myDepth == self.depth:
return self.evaluationFunction(gameState)
numAgents = gameState.getNumAgents()
for i in range(0, numAgents, 1):
legalMoves = gameState.getLegalActions(i)
successors = [gameState.generateSuccessor(j, legalMoves[j]) for j, move
in enumerate(legalMoves)]
for successor in successors:
if i == 0:
return maxValue(successor, i)
else:
return minValue(successor, i)
def minValue(gameState, agentIndex):
minUtility = float('inf')
legalMoves = gameState.getLegalActions(agentIndex)
succesors = [gameState.generateSuccessor(i, legalMoves[i]) for i, move
in enumerate(legalMoves)]
for successor in successors:
minUtility = min(minUtility, miniMax(successor))
return minUtility
def maxValue(gameState, agentIndex)
self.myDepth += 1
maxUtility = float('-inf')
legalMoves = gameState.getLegalActions(agentIndex)
successors = [gameState.generateSuccessor(i, legalMoves[i]) for i, move
in enumerate(legalMoves)]
for successor in successors:
maxUtility = max(maxUtility, miniMax(successor))
return maxUtility
return miniMax(gameState)
有没有人知道为什么我的代码会这样做?我希望有一些Minimax /人工智能专家可以识别我的问题。 提前谢谢。
更新:通过将我的self.myDepth
值设置为0
而不是1
,我已经完成了异常抛出问题。但是,我的实现的整体不正确性仍然存在。
答案 0 :(得分:0)
我终于找到了解决问题的方法。主要问题是我没有正确引用depth
以跟踪层。它应该作为参数传递给每个函数,而不是在maxValue
方法中递增深度,而只是在传递给maxValue
时递增。还有其他一些逻辑错误,例如未正确引用numAgents
,以及我的miniMax
方法未返回操作的事实。这是我的解决方案,结果证明是有效的:
def getAction(self, gameState):
self.numAgents = gameState.getNumAgents()
self.myDepth = 0
self.action = Direction.STOP # Imported from a class that defines 5 directions
def miniMax(gameState, index, depth, action):
maxU = float('-inf')
legalMoves = gameState.getLegalActions(index)
for move in legalMoves:
tempU = maxU
successor = gameState.generateSuccessor(index, move)
maxU = minValue(successor, index + 1, depth)
if maxU > tempU:
action = move
return action
def maxValue(gameState, index, depth):
if gameState.isWin() or gameState.isLose() or depth == self.depth:
return self.evaluationFunction(gameState)
index %= (self.numAgents - 1)
maxU = float('-inf')
legalMoves = gameState.getLegalActions(index)
for move in legalMoves:
successor = gameState.generateSuccessor(index, move)
maxU = max(maxU, minValue(successor, index + 1, depth)
return maxU
def minValue(gameState, index, depth):
if gameState.isWin() or gameState.isLose() or depth == self.depth:
return self.evaluationFunction(gameState)
minU = float('inf')
legalMoves = gameState.getLegalActions(index)
if index + 1 == self.numAgents:
for move in legalMoves:
successor = gameState.generateSuccessor(index, move)
# Where depth is increased
minU = min(minU, maxValue(successor, index, depth + 1)
else:
for move in legalMoves:
successor = gameState.generateSuccessor(index, move)
minU = min(minU, minValue(successor, index + 1, depth)
return minU
return miniMax(gameState, self.index, self.myDepth, self.action)
并且presto!我们的最终工作多代理minimax实现。