我正在开发一个函数,它将根据3 sigma规则消除给定数据集中的异常值。我的代码如下所示。 “data”是要处理的数据集。
rm.outlier <- function(data){
apply(data, 2, function(var) {
sigma3.plus <- mean(var) + 3 * sd(var)
sigma3.min <- mean(var) - 3 * sd(var)
sapply(var, function(y) {
if (y > sigma3.plus){
y <- sigma3.plus
} else if (y < sigma3.min){
y <- sigma3.min
} else {y <- y}
})
})
as.data.frame(data)
}
为了检查功能是否有效,我写了一个简短的测试:
set.seed(123)
a <- data.frame("var1" = rnorm(10000, 0, 1))
b <- a
sum(a$var1 > mean(a$var1) + 3 * sd(a$var1)) # number of outliers in a
结果,我得到了:
[1] 12
因此数据帧a中的变量var1有12个异常值。接下来,我尝试在此对象上应用我的函数:
a2 <- rm.outlier(a)
sum(b$var1 - a2$var1)
不幸的是,它给出了0,这清楚地表明某些东西不起作用。我已经知道sapply的实现是正确的,所以我的申请一定有错误。任何帮助,将不胜感激。
答案 0 :(得分:3)
如果运行时对您很重要,您可以考虑另一种方法。您可以对此过滤进行矢量化,例如使用同样可读的pmin
和pmax
并且&gt;快15倍。如果你喜欢它更复杂,你可以使用findInterval
并获得更快的速度:
rm.outlier2 <- function(x) {
## calculate -3/3 * sigma borders
s <- mean(x) + c(-3, 3) * sd(x)
pmin(pmax(x, s[1]), s[2])
}
rm.outlier3 <- function(x) {
## calculate -3/3 * sigma borders
s <- mean(x) + c(-3, 3) * sd(x)
## sorts x into intervals 0 == left of s[1], 2 == right of s[2], 1
## between both s
i <- findInterval(x, s)
## which values are left/right of the interval
j <- which(i != 1L)
## add a value between s to directly use output of findInterval for subsetting
s2 <- c(s[1], 0, s[2])
## replace all values that are left/right of the interval
x[j] <- s2[i[j] + 1L]
x
}
对这些东西进行基准测试:
## slightly modified OP version
rm.outlier <- function(x) {
sigma3 <- mean(x) + c(-3,3) * sd(x)
sapply(x, function(y) {
if (y > sigma3[2]){
y <- sigma3[2]
} else if (y < sigma3[1]){
y <- sigma3[1]
} else {y <- y}
})
}
set.seed(123)
a <- rnorm(10000, 0, 1)
# check output
all.equal(rm.outlier(a), rm.outlier2(a))
all.equal(rm.outlier2(a), rm.outlier3(a))
library("rbenchmark")
benchmark(rm.outlier(a), rm.outlier2(a), rm.outlier3(a),
order = "relative",
columns = c("test", "replications", "elapsed", "relative"))
# test replications elapsed relative
#3 rm.outlier3(a) 100 0.028 1.000
#2 rm.outlier2(a) 100 0.102 3.643
#1 rm.outlier(a) 100 1.825 65.179
答案 1 :(得分:1)
您似乎忘了将apply函数的结果分配给新的数据帧。 (将第3行与您的代码进行比较)
rm.outlier <- function(data){
# Assign the result to a new dataframe
data_new <- apply(data, 2, function(var) {
sigma3.plus <- mean(var) + 3 * sd(var)
sigma3.min <- mean(var) - 3 * sd(var)
sapply(var, function(y) {
if (y > sigma3.plus){
y <- sigma3.plus
} else if (y < sigma3.min){
y <- sigma3.min
} else {y <- y}
})
})
# Print the new dataframe
as.data.frame(data_new)
}
set.seed(123)
a <- data.frame("var1" = rnorm(10000, 0, 1))
sum(a$var1 > mean(a$var1) + 3 * sd(a$var1)) # number of too big outliers
# 15
sum(a$var1 < mean(a$var1) - 3 * sd(a$var1)) # number of too small outliers
# 13
# Overall 28 outliers
# Check the function for the number of outliers
a2 <- rm.outlier(a)
sum(a2$var1 == a$var1) - length(a$var1)