我尝试将PCA应用于我的数据,然后将RandomForest应用于转换后的数据。但是,PCA.transform(data)给了我一个DataFrame,但我需要一个mllib LabeledPoints来提供我的RandomForest。我怎样才能做到这一点? 我的代码:
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.ml.feature.PCA
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
val dataset = MLUtils.loadLibSVMFile(sc, "data/mnist/mnist.bz2")
val splits = dataset.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
val trainingDf = trainingData.toDF()
val pca = new PCA()
.setInputCol("features")
.setOutputCol("pcaFeatures")
.setK(100)
.fit(trainingDf)
val pcaTrainingData = pca.transform(trainingDf)
val numClasses = 10
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 10 // Use more in practice.
val featureSubsetStrategy = "auto" // Let the algorithm choose.
val impurity = "gini"
val maxDepth = 20
val maxBins = 32
val model = RandomForest.trainClassifier(pcaTrainingData, numClasses, categoricalFeaturesInfo,
numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)
error: type mismatch;
found : org.apache.spark.sql.DataFrame
required: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint]
我尝试了以下两种可能的解决方案,但它们不起作用:
scala> val pcaTrainingData = trainingData.map(p => p.copy(features = pca.transform(p.features)))
<console>:39: error: overloaded method value transform with alternatives:
(dataset: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame <and>
(dataset: org.apache.spark.sql.DataFrame,paramMap: org.apache.spark.ml.param.ParamMap)org.apache.spark.sql.DataFrame <and>
(dataset: org.apache.spark.sql.DataFrame,firstParamPair: org.apache.spark.ml.param.ParamPair[_],otherParamPairs: org.apache.spark.ml.param.ParamPair[_]*)org.apache.spark.sql.DataFrame
cannot be applied to (org.apache.spark.mllib.linalg.Vector)
和
val labeled = pca
.transform(trainingDf)
.map(row => LabeledPoint(row.getDouble(0), row(4).asInstanceOf[Vector[Int]]))
error: type mismatch;
found : scala.collection.immutable.Vector[Int]
required: org.apache.spark.mllib.linalg.Vector
(我在上面的例子中导入了org.apache.spark.mllib.linalg.Vectors)
任何帮助?
答案 0 :(得分:13)
此处的正确方法是您尝试的第二个方法 - 将每个Row
映射到LabeledPoint
以获得RDD[LabeledPoint]
。但是,它有两个错误:
Vector
类(org.apache.spark.mllib.linalg.Vector
)不接受类型参数(例如Vector[Int]
) - 所以即使你有正确的导入,编译器也认为你的意思是{{1哪个DOES。从scala.collection.immutable.Vector
返回的DataFrame有3列,您尝试提取第4列。例如,显示前4行:
PCA.fit()
为了使这更容易 - 我更喜欢使用列名称而不是他们的索引。
所以这是你需要的转变:
+-----+--------------------+--------------------+
|label| features| pcaFeatures|
+-----+--------------------+--------------------+
| 5.0|(780,[152,153,154...|[880.071111851977...|
| 1.0|(780,[158,159,160...|[-41.473039034112...|
| 2.0|(780,[155,156,157...|[931.444898405036...|
| 1.0|(780,[124,125,126...|[25.5114585648411...|
+-----+--------------------+--------------------+