我正在制作一个在中间发生剧烈变化的时间序列。
import UIKit
import MessageUI
class EmailViewController: UITableViewController, MFMailComposeViewControllerDelegate, UITextFieldDelegate {
let userDefaults = NSUserDefaults.standardUserDefaults()
@IBOutlet weak var name: UITextField!
@IBOutlet weak var phone: UITextField!
@IBOutlet weak var email: UITextField!
@IBAction func SendEmailButton(sender: AnyObject) {
let fields: [UITextField] = [name, phone, email]
let messageBody = "Name:\(name.text)\nPhone:\(phone.text)\nEmail:\(email.text)"
let emailTitle = "Interface Information"
let toRecipents = [""]
let mc: MFMailComposeViewController = MFMailComposeViewController()
mc.mailComposeDelegate = self
mc.setSubject(emailTitle)
mc.setMessageBody(messageBody, isHTML: false)
mc.setToRecipients(toRecipents)
self.presentViewController(mc, animated: true, completion: nil)
}
override func viewDidAppear(animated: Bool) {
name.text = userDefaults.stringForKey("name")
phone.text = userDefaults.stringForKey("phone")
email.text = userDefaults.stringForKey("email")
}
}
这一系列import numpy as np
size = 120
x1 = np.random.randn(size)
x2 = np.random.randn(size) * 4
x = np.hstack([x1, x2])
看起来像这样:
现在的目标是使用PyMC3来估计发生变化的时间的后验分布(切换点)。这应该发生在索引120周围。我使用了以下代码;
x
执行此操作会出现错误,我无法使用from pymc3 import Model, Normal, HalfNormal, DiscreteUniform
basic_model = Model()
with basic_model:
mu1 = Normal('mu1', mu=0, sd=10)
mu2 = Normal('mu2', mu=0, sd=10)
sigma1 = HalfNormal('sigma1', sd=2)
sigma2 = HalfNormal('sigma2', sd=2)
tau = DiscreteUniform('tau', 0, 240)
# get likelihoods
y1 = Normal('y1', mu=mu1, sd=sigma1, observed=x[:tau])
y2 = Normal('y2', mu=mu2, sd=sigma2, observed=x[tau:])
对数组进行切片。在PyMC中解决这个问题的方法是什么?看起来我需要在PyMC中通过随机的东西来完成切片。
答案 0 :(得分:3)
原来PyMC3有一个开关模型。让t
成为时间的变量。
import pymc3 as pm
basic_model = pm.Model()
with basic_model:
mu1 = pm.Normal('mu1', mu=0, sd=10)
mu2 = pm.Normal('mu2', mu=0, sd=10)
sigma1 = pm.HalfNormal('sigma1', sd=2)
sigma2 = pm.HalfNormal('sigma2', sd=2)
switchpoint = pm.DiscreteUniform('switchpoint', t.min(), t.max())
tau_mu = pm.switch(t >= switchpoint, mu1, mu2)
tau_sigma = pm.switch(t >= switchpoint, sigma1, sigma2)
y = pm.Normal('y1', mu=tau_mu, sd=tau_sigma, observed=x)