我有一个名为mydf
的数据框,其中我有三个主要的协变量(PCA.1,PCA.2,PCA.3)。我想得到3d距离矩阵,并获得所有比较Samples
之间的最短欧氏距离。在另一个名为myref
的数据框中,我有Samples
和unknown
个样本的已知身份。通过计算mydf的最短欧氏距离,我想将已知的Identity
分配给未知样本。有人可以帮我完成这件事。
是myDF
mydf <- structure(list(Sample = c("1", "2", "4", "5", "6", "7", "8",
"9", "10", "12"), PCA.1 = c(0.00338, -0.020373, -0.019842, -0.019161,
-0.019594, -0.019728, -0.020356, 0.043339, -0.017559, -0.020657
), PCA.2 = c(0.00047, -0.010116, -0.011532, -0.011582, -0.013245,
-0.011751, -0.010299, -0.005801, -0.01, -0.011334), PCA.3 = c(-0.008787,
0.001412, 0.003751, 0.00371, 0.004242, 0.003738, 0.000592, -0.037229,
0.004307, 0.00339)), .Names = c("Sample", "PCA.1", "PCA.2", "PCA.3"
), row.names = c(NA, 10L), class = "data.frame")
myref
myref<- structure(list(Sample = c("1", "2", "4", "5", "6", "7", "8",
"9", "10", "12"), Identity = c("apple", "unknown", "ball", "unknown",
"unknown", "car", "unknown", "cat", "unknown", "dog")), .Names = c("Sample",
"Identity"), row.names = c(NA, 10L), class = "data.frame")
答案 0 :(得分:1)
uIX = which(myref$Identity == "unknown")
dMat = as.matrix(dist(mydf[, -1])) # Calculate the Euclidean distance matrix
nn = apply(dMat, 1, order)[2, ] # For each row of dMat order the values increasing values.
# Select nearest neighbor (it is 2, because 1st row will be self)
myref$Identity[uIX] = myref$Identity[nn[uIX]]
请注意,上面的代码会将一些身份设置为unknown
。如果您希望匹配具有已知标识的最近邻居,请将第二行更改为
dMat[uIX, uIX] = Inf