我正在对我的数据运行零膨胀泊松回归。我想在一个整洁的表格中保存回归的摘要()。我尝试了write.table()
和其他变体。大多数错误都说它无法解释摘要输出。
以下是我想要做的一个例子。我已经标记了不起作用的部件。数据和正在运行的zeroinfl()
示例来自this site。如何以简洁的格式保存回归模型的摘要?
# This example comes directly from http://statistics.ats.ucla.edu/stat/r/dae/zipoisson.html
zinb <- read.csv("http://www.ats.ucla.edu/stat/data/fish.csv")
zinb <- within(zinb, {
nofish <- factor(nofish)
livebait <- factor(livebait)
camper <- factor(camper)
})
summary(m1 <- zeroinfl(count ~ child + camper | persons, data = zinb))
#my code for writing the output
write.table(x=summary(m1), file="summary_m1.csv") # this doesn't work
htmlreg(summary(m1), digits=3, file="summary_m1.html") # this doesn't work
答案 0 :(得分:2)
require(pscl)
summary(m1 <- zeroinfl(count ~ child + camper | persons, data = zinb))
Call:
zeroinfl(formula = count ~ child + camper | persons, data = zinb)
Pearson residuals:
Min 1Q Median 3Q Max
-1.2369 -0.7540 -0.6080 -0.1921 24.0847
Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.59789 0.08554 18.680 <2e-16 ***
child -1.04284 0.09999 -10.430 <2e-16 ***
camper1 0.83402 0.09363 8.908 <2e-16 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.2974 0.3739 3.470 0.000520 ***
persons -0.5643 0.1630 -3.463 0.000534 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 12
Log-likelihood: -1032 on 5 Df
应用于该模型对象的“stargazer”的结果可以传递到Latex&#34;容器&#34;:
> stargazer(m1) # Latex is default but type="html" is also possible
# returns ------
% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Wed, Mar 02, 2016 - 12:37:08
\begin{table}[!htbp] \centering
\caption{}
\label{}
\begin{tabular}{@{\extracolsep{5pt}}lc}
\\[-1.8ex]\hline
\hline \\[-1.8ex]
& \multicolumn{1}{c}{\textit{Dependent variable:}} \\
\cline{2-2}
\\[-1.8ex] & count \\
\hline \\[-1.8ex]
child & $-$1.043$^{***}$ \\
& (0.100) \\
& \\
camper1 & 0.834$^{***}$ \\
& (0.094) \\
& \\
Constant & 1.598$^{***}$ \\
& (0.086) \\
& \\
\hline \\[-1.8ex]
Observations & 250 \\
Log Likelihood & $-$1,031.608 \\
\hline
\hline \\[-1.8ex]
\textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
\end{tabular}
\end{table}
在MacTex中成功的Latex代码:
\documentclass{article}
\usepackage{tikz}
\usepackage{verbatim}
\begin{document}
\pagestyle{empty}
% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Wed, Mar 02, 2016 - 12:39:08
\begin{table}[!htbp] \centering
\caption{}
\label{}
\begin{tabular}{@{\extracolsep{5pt}}lc}
\\[-1.8ex]\hline
\hline \\[-1.8ex]
& \multicolumn{1}{c}{\textit{Dependent variable:}} \\
\cline{2-2}
\\[-1.8ex] & count \\
\hline \\[-1.8ex]
child & $-$1.043$^{***}$ \\
& (0.100) \\
& \\
camper1 & 0.834$^{***}$ \\
& (0.094) \\
& \\
Constant & 1.598$^{***}$ \\
& (0.086) \\
& \\
\hline \\[-1.8ex]
Observations & 250 \\
Log Likelihood & $-$1,031.608 \\
\hline
\hline \\[-1.8ex]
\textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
\end{tabular}
\end{table}
\end{document}
答案 1 :(得分:0)
zeroinfl
对象包含两个模型,一个具有泊松回归系数,另一个具有logit系数。 stargazer
现在使用zero.component
选项处理零膨胀对象。使用相同的UCLA代码:
library(pscl)
zinb <- read.csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
zinb <- within(zinb, {
nofish <- factor(nofish)
livebait <- factor(livebait)
camper <- factor(camper)
})
m1 <- zeroinfl(count ~ child + camper | persons, data = zinb)
# return count / Poisson model
stargazer(m1, zero.component = FALSE, type = 'text')
==========================================
Dependent variable:
---------------------------
count
------------------------------------------
child -1.043***
(0.100)
camper1 0.834***
(0.094)
Constant 1.598***
(0.086)
------------------------------------------
Observations 250
Log Likelihood -1,031.608
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01
# return zero / logit model
stargazer(m1, zero.component = TRUE, type = 'text')
==========================================
Dependent variable:
---------------------------
count
------------------------------------------
persons -0.564***
(0.163)
Constant 1.297***
(0.374)
------------------------------------------
Observations 250
Log Likelihood -1,031.608
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01