尝试编写一些内容,以便从某些任意数据库结果(即并非总是来自表x)自动转换为适当的PHP类型结果。
我扩展了PDOStatement类,
class Statement extends PDOStatement {
protected $pdo;
protected $transformer;
protected function __construct(PDO $pdo) {
$this->pdo = $pdo;
$this->transformer = $pdo->getTransformer();
}
public function fetchAll() {
$results = parent::fetchAll(PDO::FETCH_ASSOC);
if ($this->getTransformer()) $results = $this->completeResults($results);
return $results;
}
private function completeResults(array $results = []) {
if ($results == null || count($results) == 0) return null;
if ($results[0] == false || !is_array($results[0])) return null;
$index = 0;
$typeMap = [];
foreach ($results[0] as $column => $result) {
$meta = $this->getColumnMeta($index); // this is very painful
$typeMap[$column] = $meta['native_type'];
$index++;
}
$transformer = $this->getTransformer();
foreach ($results as $index => &$result) {
array_walk($result, function(&$value, $key) use ($typeMap, $transformer) {
$type = $typeMap[$key];
$value = $transformer->transformToPhpValue($value, $type);
});
}
return $results;
}
}
以前,在我了解PDO抽象之前,我使用(在我的具体情况下)标准的pg _...()方法。使用pg_field_type($resource, $column);
,我可以获取列类型,而且速度相对较快。
现在,使用新的(对我而言)PDO方法。如果我注释掉我执行转换的代码部分,并运行7个连续查询:
time to complete: 9.5367431640625E-7 seconds
time to complete: 1.1920928955078E-6 seconds
time to complete: 9.5367431640625E-7 seconds
time to complete: 0 seconds
time to complete: 9.5367431640625E-7 seconds
time to complete: 0 seconds
time to complete: 0 seconds
启用它:
time to complete: 0.5777850151062 seconds
time to complete: 0.49124097824097 seconds
time to complete: 0.28375911712646 seconds
time to complete: 0.5946729183197 seconds
time to complete: 0.42177200317383 seconds
time to complete: 5.0067901611328E-6 seconds
time to complete: 0.42121982574463 seconds
那/疯狂/。
通过查看我的Postgres日志,我可以告诉它逐个获取列信息:
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=1114
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=1114
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=25
... like 30 more of these ...
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=25
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=23
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=23
LOG: statement: SELECT TYPNAME FROM PG_TYPE WHERE OID=23
查询的复杂程度来自
SELECT
p.modified_at, ... ~ 30 fields ..., r.level AS id_level
FROM table_p AS p
LEFT JOIN table_a AS a ON (p.owner = a.id)
LEFT JOIN table_a0 AS a0 ON (p.reporter = a0.id)
LEFT JOIN table_r AS r ON (p.id = r.id)
WHERE (p.id = 1)
到SELECT * FROM table_a AS a;
所以,我想问题是:有更好的方法吗?有没有办法,我可以做到这一点,而不会影响我的代码的速度? 7个查询位于每个请求运行的连续查询的低端,因此它是我想要处理的内容。
答案 0 :(得分:1)
首先,PDOStatement::getColumnMeta()
是 experimental ,所以要非常小心地使用它(希望你设置自动测试来检查任何php / pdo版本更新)。 / p>
至于检索元数据的速度,我已经运行了一些测试,结果发现SELECT TYPNAME FROM PG_TYPE WHERE OID=%
查询快速运行炽热:
explain analyze SELECT TYPNAME FROM PG_TYPE WHERE OID=25;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Index Scan using pg_type_oid_index on pg_type (cost=0.27..8.29 rows=1 width=64) (actual time=0.051..0.055 rows=1 loops=1)
Index Cond: (oid = 25::oid)
Planning time: 0.165 ms
Execution time: 0.100 ms
(4 rows)
explain analyze SELECT TYPNAME FROM PG_TYPE WHERE OID=1114;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Index Scan using pg_type_oid_index on pg_type (cost=0.27..8.29 rows=1 width=64) (actual time=0.083..0.085 rows=1 loops=1)
Index Cond: (oid = 1114::oid)
Planning time: 0.192 ms
Execution time: 0.139 ms
(4 rows)
explain analyze SELECT TYPNAME FROM PG_TYPE WHERE OID=600;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------
Index Scan using pg_type_oid_index on pg_type (cost=0.27..8.29 rows=1 width=64) (actual time=0.063..0.064 rows=1 loops=1)
Index Cond: (oid = 600::oid)
Planning time: 0.261 ms
Execution time: 0.125 ms
(4 rows)
PG大约0.0001秒选择那些数据,即使加起来这些数据中的30个也不会在0.5秒内总和或类似。
我建议您在服务器上运行explain analyze
以查看pg_type
个查询,并查看其中的时间安排。
请注意,您没有使用与数据库的持久连接,这会为您的元数据调用增加一大堆时间。