我正在从30000个随机生成的功能中学习提升树。学习仅限于说出最好的100个功能。在学习如何从CvBoost对象中提取决策树使用的特征的索引之后。
我这样做的动机是消除生成所有30000功能的要求,并且只计算将要使用的功能。我已经包含了从CvBoost.save函数生成的yml文件的打印输出。我想我想要的是名为sample_count
的值,它在深度1的决策树中标识了如下所示的特征:
trees:
-
best_tree_idx: -1
nodes:
-
depth: 0
sample_count: 11556
value: -1.8339875099775065e+00
norm_class_idx: 0
Tn: 0
complexity: 0
alpha: 0.
node_risk: 0.
tree_risk: 0.
tree_error: 0.
splits:
- { var:497, quality:8.6223608255386353e-01,
le:5.3123302459716797e+00 }
-
depth: 1
sample_count: 10702
value: -1.8339875099775065e+00
norm_class_idx: 0
Tn: 0
complexity: 0
alpha: 0.
node_risk: 0.
tree_risk: 0.
tree_error: 0.
-
depth: 1
sample_count: 854
value: 1.8339875099775065e+00
norm_class_idx: 1
Tn: 0
complexity: 0
alpha: 0.
node_risk: 0.
tree_risk: 0.
tree_error: 0.
修改
目前,我有以下用于访问数据的代码:
//Interrogate the Decision Tree. Each element is a Decision Tree, making up the classifer
CvSeq* decisionTree = boostDevice.get_weak_predictors();
simplifyFeatureSet(decisionTree, firstOrderROIs );
这个功能是:
inline void Chnftrs::simplifyFeatureSet(CvSeq* decisionTree, std::vector<boost::tuple<int, cv::Rect> >& rois)
{
//This variable stores the index of the feature used from rois and a pointer to the split so that the variable there can
//be updated when the rois are pruned and reordered.
std::vector<boost::tuple<int, CvDTreeSplit* > > featureIdx;
//Determine the max depth of the tree
printf("Size of boost %d \n", decisionTree->total);
for (int i = 0; i < decisionTree->total; i++)
{
//Get the root of the tree
CvBoostTree *tree =0;
tree = (CvBoostTree*)cvGetSeqElem(decisionTree, i);
if(tree == 0)
printf("Tree is NULL\n");
else
printf("Tree Addr %ld\n", tree);
const CvDTreeNode *root = tree->get_root();
printf("Class_idx %d, Value %f ", root->sample_count, root->value);
featureIdx.push_back(boost::tuple<int, CvDTreeSplit*>(root->split->var_idx, root->split));
//Search down the right hand side
depthFirstSearch(root->right, featureIdx);
//Search down the left hand side
depthFirstSearch(root->left, featureIdx);
}
}
但是,当我尝试访问根root->sample_count
中的任何根成员时,我会遇到分段错误。可能是CvTree的成员无法访问,除非CvTreeTrainData.shared设置为true(默认情况下为false)。如所示here
任何帮助都会很棒
欢呼声
彼得
答案 0 :(得分:0)
好,
能够通过遵循源中的方法来编辑决策树,以了解CvBoost分类器如何保存并从磁盘读取自身。出于某种原因,对于Decision树类型对象,cvGetSeqElem()
不会从传递给它的CvSeq对象返回有效指针。
为了获得决策树的副本,CvSeqReader和宏cvStartReadSeq效果最佳。在循环中获取Seq中的下一个树时,宏CV_READ_SEQ_ELEM()似乎会自行更新:
CvSeqReader reader;
cvStartReadSeq( weak, &reader );
for (int i = 0; i < weak->total; i++)
{
CvBoostTree* tree;
CV_READ_SEQ_ELEM( tree, reader );
const CvDTreeNode *root = 0;
root = tree->get_root();
printf("Root Split VarIdx : %d c: %f, ", root->split->var_idx, root->split->ord.c);
featureIdx.push_back(boost::tuple<int, CvDTreeSplit*>(root->split->var_idx, root->split));
//Search down the right hand side
depthFirstSearch(root->right, featureIdx);
//Search down the left hand side
depthFirstSearch(root->left, featureIdx);
}