我试图用wxMaxima和sympy解决以下无限积分:
integrate(r^2*sqrt(R^2-r^2),r)
在千里马,我确实得到了答案但没有同情。我不懂为什么。我是Python的重要用户,并且喜欢在Python中进行符号数学,但由于sympy没有解决这个问题,我仍然坚持使用Maxima。
我做错了还是Maxiam更好? (我也在Mathematica中解决了同样问题)
我在wxMaxima中得到了以下答案:
f:r^2*sqrt(R^2-r^2);
g:integrate(f,r);
给出了这个答案:
g:(R^4*asin(r/abs(R)))/8-(r*(R^2-r^2)^(3/2))/4+(r*R^2*sqrt(R^2-r^2))/8
它看起来很难看,但忘掉了。这里的观点是,同情不能解决这个问题。试着用这段代码解决同样问题:
import sympy as sy
import math
R,r = sy.symbols('R r')
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
print g
给出此错误消息:
Traceback (most recent call last):
File "E:\UD\Software\BendStiffener\calculate-moment\moment-calculation-equations\sympy-test.py", line 4, in <module>
g = sy.integrate(r**2*(R**2-r**2)**0.5,r)
File "C:\Python27\lib\site-packages\sympy\utilities\decorator.py", line 35, in threaded_func
return func(expr, *args, **kwargs)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 1232, in integrate
risch=risch, manual=manual)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 487, in doit
conds=conds)
File "C:\Python27\lib\site-packages\sympy\integrals\integrals.py", line 876, in _eval_integral
h = meijerint_indefinite(g, x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1596, in meijerint_indefinite
res = _meijerint_indefinite_1(f.subs(x, x + a), x)
File "C:\Python27\lib\site-packages\sympy\integrals\meijerint.py", line 1646, in _meijerint_indefinite_1
r = hyperexpand(r.subs(t, a*x**b))
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2482, in hyperexpand
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1351, in replace
rv = bottom_up(self, rec_replace, atoms=True)
File "C:\Python27\lib\site-packages\sympy\simplify\simplify.py", line 4082, in bottom_up
rv = F(rv)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1336, in rec_replace
new = _value(expr, result)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1280, in <lambda>
_value = lambda expr, result: value(*expr.args)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2479, in do_meijer
allow_hyper, rewrite=rewrite)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2375, in _meijergexpand
t, 1/z0)
File "C:\Python27\lib\site-packages\sympy\simplify\hyperexpand.py", line 2335, in do_slater
resid = residue(integrand, s, b_ + r)
File "C:\Python27\lib\site-packages\sympy\series\residues.py", line 57, in residue
s = expr.series(x, n=0)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2435, in series
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2442, in series
s1 = self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\core\mul.py", line 1446, in _eval_nseries
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
File "C:\Python27\lib\site-packages\sympy\core\expr.py", line 2639, in nseries
return self._eval_nseries(x, n=n, logx=logx)
File "C:\Python27\lib\site-packages\sympy\functions\special\gamma_functions.py", line 168, in _eval_nseries
return super(gamma, self)._eval_nseries(x, n, logx)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 598, in _eval_nseries
term = e.subs(x, S.Zero)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 892, in subs
rv = rv._subs(old, new, **kwargs)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 1006, in _subs
rv = fallback(self, old, new)
File "C:\Python27\lib\site-packages\sympy\core\basic.py", line 983, in fallback
rv = self.func(*args)
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 382, in __new__
return result.evalf(mlib.libmpf.prec_to_dps(pr))
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1317, in evalf
result = evalf(self, prec + 4, options)
File "C:\Python27\lib\site-packages\sympy\core\evalf.py", line 1217, in evalf
re, im = x._eval_evalf(prec).as_real_imag()
File "C:\Python27\lib\site-packages\sympy\core\function.py", line 486, in _eval_evalf
v = func(*args)
File "C:\Python27\lib\site-packages\sympy\mpmath\ctx_mp_python.py", line 993, in f
return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
File "C:\Python27\lib\site-packages\sympy\mpmath\libmp\gammazeta.py", line 1947, in mpf_gamma
raise ValueError("gamma function pole")
ValueError: gamma function pole
答案 0 :(得分:2)
当你略微改写你的等式时,你会得到一个解决方案:
import sympy as sy
import math
R, r = sy.symbols('R r')
g = sy.integrate(r**2 * sy.sqrt((R**2 - r**2)), r)
print g.simplify()
因此,我使用expr**0.5
而不是sy.sqrt(expr)
。这给了
Piecewise((I*R*(-R**3*acosh(r/R) - R**2*r*sqrt((-R**2 + r**2)/R**2) + 2*r**3*sqrt((-R**2 + r**2)/R**2))/8, Abs(r**2/R**2) > 1), (R*(R**3*asin(r/R) - R**2*r*sqrt(1 - r**2/R**2) + 2*r**3*sqrt(1 - r**2/R**2))/8, True))
这是否与Maxima的结果相同很难分辨,因为sympy为您提供了两个部分的解决方案,这取决于sqrt
中的argumnt是大于还是小于0.您可以尝试使用实际界限并检查你是否得到了与Maxima解决方案相同的结果,并且结果的第二部分会给你。
您可以像这样访问解决方案的第二部分:
g.args[1][0]
给你:
R**4*asin(r/R)/8 - R**3*r/(8*sqrt(1 - r**2/R**2)) + 3*R*r**3/(8*sqrt(1 - r**2/R**2)) - r**5/(4*R*sqrt(1 - r**2/R**2))
您也可以通过以下方式获得简化版本:
g.args[1][0].simplify()
给你:
R*(R**3*asin(r/R) - R**2*r*sqrt(1 - r**2/R**2) + 2*r**3*sqrt(1 - r**2/R**2))/8
现在看起来与Maxima获得的结果非常相似。
答案 1 :(得分:1)
一般来说,SymPy在有理数上的表现要好于浮点数,尤其是,当这些数字是幂时。
这是因为“好的”封闭式解决方案通常只存在于确切的权力。考虑一下这个
之间的区别return {
restrict: 'A',
require: 'ngModel',
scope: {
options: '=',
model: '=ngModel'
},
link: function ($scope, $el, $attrs) {
scope = $scope;
$scope.$watch(
function () {
return $el[0].id;
},
function (elementId) {
$('#' + elementId).on('switch-change', function () {
scope.model[this.id] = $(this).find('input').is(':checked');
$scope.$apply();
});
$('#' + elementId)['bootstrapSwitch']();
$('#' + elementId).bootstrapSwitch('setOnLabel', _($('#' + elementId).attr('data-on-label')));
$('#' + elementId).bootstrapSwitch('setOffLabel', _($('#' + elementId).attr('data-off-label')));
});
$scope.$watchCollection('model', function(newval){
if(typeof newval !== 'undefined' && !$.isEmptyObject(newval)){
// do some stuff here
}
});
}
}
和这个
In [39]: integrate(r**2*sqrt(R**2-r**2), r)
Out[39]:
⎧ 4 ⎛r⎞
⎪ ⅈ⋅R ⋅acosh⎜─⎟ 3 3 5 │ 2│
⎪ ⎝R⎠ ⅈ⋅R ⋅r 3⋅ⅈ⋅R⋅r ⅈ⋅r │r │
⎪- ───────────── + ───────────────── - ───────────────── + ─────────────────── for │──│ > 1
⎪ 8 _________ _________ _________ │ 2│
⎪ ╱ 2 ╱ 2 ╱ 2 │R │
⎪ ╱ r ╱ r ╱ r
⎪ 8⋅ ╱ -1 + ── 8⋅ ╱ -1 + ── 4⋅R⋅ ╱ -1 + ──
⎪ ╱ 2 ╱ 2 ╱ 2
⎪ ╲╱ R ╲╱ R ╲╱ R
⎨
⎪ 4 ⎛r⎞
⎪ R ⋅asin⎜─⎟ 3 3 5
⎪ ⎝R⎠ R ⋅r 3⋅R⋅r r
⎪ ────────── - ──────────────── + ──────────────── - ────────────────── otherwise
⎪ 8 ________ ________ ________
⎪ ╱ 2 ╱ 2 ╱ 2
⎪ ╱ r ╱ r ╱ r
⎪ 8⋅ ╱ 1 - ── 8⋅ ╱ 1 - ── 4⋅R⋅ ╱ 1 - ──
⎪ ╱ 2 ╱ 2 ╱ 2
⎩ ╲╱ R ╲╱ R ╲╱ R
功率几乎为0.5,但答案需要使用特殊功能来表示。 SymPy可能没有注意到0.5应该是1/2(并且浮点数的不精确性对此没有帮助)。
话虽如此,我认为这是一个SymPy错误,特别是因为它可以计算In [40]: integrate(r**2*(R**2-r**2)**0.5001, r)
Out[40]:
⎛ │ 2 2⋅ⅈ⋅π⎞
1.0002 3 ┌─ ⎜-0.5001, 3/2 │ r ⋅ℯ ⎟
0.333333333333333⋅R ⋅r ⋅ ├─ ⎜ │ ─────────⎟
2╵ 1 ⎜ 5/2 │ 2 ⎟
⎝ │ R ⎠
。