我有像这样的pandas数据框..
created_time reached_time
2016-01-02 12:57:44 14:20:22
2016-01-02 12:57:44 13:01:38
2016-01-03 10:38:51 12:24:07
2016-01-03 10:38:51 12:32:11
2016-01-03 10:38:52 12:23:20
2016-01-03 10:38:52 12:51:34
2016-01-03 10:38:52 12:53:33
2016-01-03 10:38:52 13:04:08
2016-01-03 10:38:52 13:13:40
我想减去这两个日期列,并希望得到time
我正在python中执行以下操作
speed['created_time'].dt.time - speed['reached_time']
但它给了我以下错误
TypeError: ufunc subtract cannot use operands with types dtype('O') and dtype('<m8[ns]')
created_time
的数据类型为object
,reached_type
的数据类型为timedelta64[ns]
答案 0 :(得分:3)
您可以下载到NumPy阵列并在那里执行datetime/timedelta arithmetic。首先,创建一个dtype datetime64[D]
的日期数组:
dates = speed['created_time'].values.astype('datetime64[D]')
然后您有两个选择:您可以将reached_time
转换为日期,并从日期中减去日期:
speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']
或者您可以将created_time
转换为timedeltas,并从timedeltas中减去timedeltas:
speed['created_delta'] = speed['created_time'].values - dates
speed['diff'] = speed['created_delta'] - speed['reached_time']
import pandas as pd
speed = pd.DataFrame(
{'created_time':
['2016-01-02 12:57:44', '2016-01-02 12:57:44', '2016-01-03 10:38:51',
'2016-01-03 10:38:51', '2016-01-03 10:38:52', '2016-01-03 10:38:52',
'2016-01-03 10:38:52', '2016-01-03 10:38:52', '2016-01-03 10:38:52'],
'reached_time':
['14:20:22', '13:01:38', '12:24:07', '12:32:11', '12:23:20',
'12:51:34', '12:53:33', '13:04:08', '13:13:40']})
speed['reached_time'] = pd.to_timedelta(speed['reached_time'])
speed['created_time'] = pd.to_datetime(speed['created_time'])
dates = speed['created_time'].values.astype('datetime64[D]')
speed['reached_date'] = dates + speed['reached_time'].values
speed['diff'] = speed['created_time'] - speed['reached_date']
# alternatively
# speed['created_delta'] = speed['created_time'].values - dates
# speed['diff'] = speed['created_delta'] - speed['reached_time']
print(speed)
产量
created_time reached_time reached_date diff
0 2016-01-02 12:57:44 14:20:22 2016-01-02 14:20:22 -1 days +22:37:22
1 2016-01-02 12:57:44 13:01:38 2016-01-02 13:01:38 -1 days +23:56:06
2 2016-01-03 10:38:51 12:24:07 2016-01-03 12:24:07 -1 days +22:14:44
3 2016-01-03 10:38:51 12:32:11 2016-01-03 12:32:11 -1 days +22:06:40
4 2016-01-03 10:38:52 12:23:20 2016-01-03 12:23:20 -1 days +22:15:32
5 2016-01-03 10:38:52 12:51:34 2016-01-03 12:51:34 -1 days +21:47:18
6 2016-01-03 10:38:52 12:53:33 2016-01-03 12:53:33 -1 days +21:45:19
7 2016-01-03 10:38:52 13:04:08 2016-01-03 13:04:08 -1 days +21:34:44
8 2016-01-03 10:38:52 13:13:40 2016-01-03 13:13:40 -1 days +21:25:12
使用HRYR's improvement,您可以在不下载到NumPy数组的情况下进行计算(即无需访问.values
):
dates = speed['created_time'].dt.normalize()
speed['reached_date'] = dates + speed['reached_time']
speed['diff'] = speed['created_time'] - speed['reached_date']
答案 1 :(得分:2)
首先将Public Sub RadGrid_NeedDataSource(ByVal source As RadGrid, ByVal e As GridNeedDataSourceEventArgs) 'Handles RadGrid.NeedDataSource
Dim RadGrid As RadGrid = CType(source, RadGrid)
'Dim nestedItem As GridNestedViewItem = CType(source.NamingContainer, GridNestedViewItem)
'Dim CustomerID = CType(nestedItem.ParentItem, GridDataItem).GetDataKeyValue(source.Attributes("TableID"))
Dim gridSortString As String = RadGrid.MasterTableView.SortExpressions.GetSortString()
Dim args As New DataSourceSelectArguments(gridSortString)
If gridSortString Is Nothing Then
RadGrid.DataSource = GetDataTable("SELECT * FROM [" + source.Attributes("TableName") + "] ") 'Where CustomerID = N'" + CustomerID + "'
Else
RadGrid.DataSource = GetDataTable("SELECT * FROM [" + source.Attributes("TableName") + "] ORDER BY " & gridSortString) 'Where CustomerID = N'" + CustomerID + "'
End If
End Sub
列转换为日期时间:
created_time
然后使用df["created_time"] = pd.to_datetime(df["created_time"])
将时间部分设为df["created_time"] - df["created_time"].dt.normalize()
类型。