在使用rms
包和ols()
函数进行简单的多变量回归时,我不完全确定为什么会收到此错误。 lm()
函数工作正常。
错误:
datadist $ limits中的错误:'closure'类型的对象不是可子集化的
示例数据:
dat <- structure(list(value = c(153.7, 137.2, 137.2, 137.2, 137.2, 137.2,
137.2, 137.2, 137.2, 144.3), x1 = c(1586.30574782368, 1827.63764435891,
1274.37779664208, 1470.22193641518, 1424.71486797217, 1588.96099774091,
1768.09933607758, 1447.4030640002, 1586.11159875168, 1741.04342002899
), x2 = c(9.37073885963036, 79.466637406771, 3.07432642677304,
5.32614246511366, 9.65257915442635, 9.70809241832467, 47.0161105721418,
39.7744598414865, 13.2940602286908, 26.6250313249184)), .Names = c("value",
"x1", "x2"), row.names = c(NA, 10L), class = "data.frame")
使用ols
的模型:
library(rms)
datadist <- datadist(dat)
options("datadist" = "datadist")
mod <- ols(log(value) ~ x1 + x2, data = dat, x = TRUE, y = TRUE)
> mod <- ols(log(value) ~ x1 + x2, data = dat, x = TRUE, y = TRUE)
Error in datadist$limits : object of type 'closure' is not subsettable
使用lm
的模型:
> mod <- lm(log(value) ~ x1 + x2, data = dat)
> summary(mod)
Call:
lm(formula = log(value) ~ x1 + x2, data = dat)
Residuals:
Min 1Q Median 3Q Max
-0.032746 -0.021049 -0.004316 0.010937 0.080848
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7514306 0.1487970 31.93 7.64e-09 ***
x1 0.0001335 0.0001019 1.31 0.232
x2 -0.0009582 0.0007205 -1.33 0.225
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.03755 on 7 degrees of freedom
Multiple R-squared: 0.2261, Adjusted R-squared: 0.004997
F-statistic: 1.023 on 2 and 7 DF, p-value: 0.4077
答案 0 :(得分:1)
您通过调用数据datadist()
来混淆"datadist"
。试试这个:
d <- datadist(dat)
options(datadist = "d") ## don't need quotes around argument name ...
mod <- ols(log(value) ~ x1 + x2, data = dat, x = TRUE, y = TRUE)
关于rms
(其回归建模策略一书很棒)的作者Frank Harrell,这种保存选项的方式(即保存名称一个对象的em>并通过名称从环境中检索它)有点微妙,可能会在这种情况下搞砸了。
这种问题也是有经验的R用户建议不通过给予其他对象同名(datadist()
)来掩盖函数名称(datadist
)的原因。 R 通常聪明到足以弄清楚你的意思,但在相对罕见的情况下,它会混淆,症状通常模糊不清,难以调试。 (这也是您不应该为数据框命名的原因data
或df
...)