我正在使用rpart.plot::prp()
绘制一棵树,非常像:
library("rpart.plot")
data("ptitanic")
data <- ptitanic
data$sibsp <- as.integer(data$sibsp) # just to show that these are integers
data$age <- as.integer(data$age) # just to show that these are integers
tree <- rpart(survived~., data=data, cp=.02)
prp(tree, , fallen.leaves = FALSE, type=4, extra=1, varlen=0, faclen=0, yesno.yshift=-1)
即使某些变量是整数(age
和sibsp
),rpart
也会创建一个看似随意的分割点,这会使观看者感到困惑。没有人在船上有2.5个兄弟姐妹/配偶 - 合乎逻辑的分裂是sibsp >= 3
我在这个出色的tutorial和split.fun
中看过?prp
。除了使用正则表达式捕获数字,正确格式化,并在标签字符串中替换它,我无法想到prp
内的任何解决方案。
我正在考虑的一种解决方法是传递修改后的tree
(类rpart
的对象),其内容已被舍入。是否可以通过修改tree$splits
来完成此操作?
还有其他想法吗?
答案 0 :(得分:4)
1)有序因素我认为sibsp
可以作为连续变量,但要处理parch
和data <- transform(data, sibsp = ordered(sibsp), parch = ordered(parch))
tree <- rpart(survived~., data=data, cp=.02)
prp(tree, , fallen.leaves = FALSE, type=4, extra=1, varlen=0, faclen=0, yesno.yshift=-1)
使它们成为有序因子:
split.fun
2)split.fun 另一种方法是指定我们自己的# next 4 lines are same as in question
data <- ptitanic
data$sibsp <- as.integer(data$sibsp) # just to show that these are integers
data$age <- as.integer(data$age) # just to show that these are integers
tree <- rpart(survived~., data=data, cp=.02)
split.labs <- function(x, labs, digits, varlen, faclen) {
sapply(labs, function(lab)
if (grepl(">=|<", lab)) {
rhs <- sub(".* ", "", lab)
lab <- sub(rhs, ceiling(as.numeric(rhs)), lab)
} else lab)
}
prp(tree, , fallen.leaves = FALSE, type=4, extra=1, varlen=0, faclen=0, yesno.yshift=-1,
split.fun = split.labs) # same as in question except for split.fun= arg
,如下所示:
# next 4 lines are same as in question
data <- ptitanic
data$sibsp <- as.integer(data$sibsp) # just to show that these are integers
data$age <- as.integer(data$age) # just to show that these are integers
tree <- rpart(survived~., data=data, cp=.02)
split.labs2 <- function(x, labs, digits, varlen, faclen) {
sapply(labs, function(lab)
if (grepl("age|sibsp|parch", lab)) {
rhs <- sub(".* ", "", lab);
lab <- sub(rhs, ceiling(as.numeric(rhs)), lab)
} else lab)
}
# similar to (2) except we use clip.right.labs = FALSE and split.labs2
prp(tree, type = 4, fallen.leaves = FALSE, extra=1, varlen=0, faclen=0,
yesno.yshift=-1, clip.right.labs = FALSE, split.fun = split.labs2)
这给出了:
(2a)(2)的变体给出了更多的控制,即可以精确指定要修改的变量,如下:
{{1}}
答案 1 :(得分:1)
rpart.plot软件包的3.0.0版本(2018年7月)特别对待具有整数值的预测变量,以自动获得所需的结果。
因此rpart.plot
现在自动打印sibsp >= 3
而不是sibsp >= 2.5
,因为它看到在训练数据中sibsp
的所有值都是整数。
vignette for the rpart.plot package的第4.1节有一个示例。