如何合并DataFrames与略有不同的合并域

时间:2016-02-11 06:52:27

标签: python pandas merge

我正在尝试围绕各种资产的公共时间戳合并一组DataFrame。数据集包含每小时数据,但时间戳在每个相应资产中的小时略有不同。所以我将时间戳从epoch转换为datetime并删除秒和分钟

     market_trading_pair  ohlcv_start_date  next_future_timestep_return
7073   Poloniex_DOGE_BTC        1445392800                    -0.023256
7074   Poloniex_DOGE_BTC        1445396400                     0.023810
7075   Poloniex_DOGE_BTC        1445400000                     0.000000
7076   Poloniex_DOGE_BTC        1445403600                    -0.023256
7077   Poloniex_DOGE_BTC        1445407200                     0.000000

使用此代码:

TS = 'ohlcv_start_date'

df[TS] = pd.to_datetime(df[TS], unit='s').dt.strftime('%Y-%m-%d %H:00:00')

print df.groupby('market_trading_pair').get_group('Poloniex_DOGE_BTC').head()[['market_trading_pair','ohlcv_start_date']]

     market_trading_pair     ohlcv_start_date  next_future_timestep_return
7073   Poloniex_DOGE_BTC  2015-10-21 02:00:00                    -0.023256
7074   Poloniex_DOGE_BTC  2015-10-21 03:00:00                     0.023810
7075   Poloniex_DOGE_BTC  2015-10-21 04:00:00                     0.000000
7076   Poloniex_DOGE_BTC  2015-10-21 05:00:00                    -0.023256
7077   Poloniex_DOGE_BTC  2015-10-21 06:00:00                     0.000000

使用所需数据创建新的dataFrame:

timestamp   DOGE
7073    2015-10-21 02:00:00 -0.023256
7074    2015-10-21 03:00:00 0.023810
7075    2015-10-21 04:00:00 0.000000
7076    2015-10-21 05:00:00 -0.023256
7077    2015-10-21 06:00:00 0.000000

然后我创建一个'骨架'时间帧DataFrame,我将能够将所有数据帧合并到并合并一个帧来测试。

timeframe = pd.date_range(start=min_time, end=max_time, freq='H')
test = DataFrame(timeframe, columns=['timestamp']) 


timestamp
0   2015-10-21 02:00:00
1   2015-10-21 03:00:00
2   2015-10-21 04:00:00
3   2015-10-21 05:00:00
4   2015-10-21 06:00:00

test = pd.merge(left=test, right=to_merge, left_on='timestamp',right_on='timestamp',how='left')

    timestamp   DOGE
0   2015-10-21 02:00:00 NaN
1   2015-10-21 03:00:00 NaN
2   2015-10-21 04:00:00 NaN
3   2015-10-21 05:00:00 NaN

结果是nan字段我认为可能是由于格式化错误?但是我比较了时间戳字符串,它们出现了'True'

1 个答案:

答案 0 :(得分:1)

dtypes出现问题 - 无法将列类型stringdatetime类型合并,因为输出为NaN

print df
               timestamp      DOGE
7073 2015-10-21 02:00:00 -0.023256
7074 2015-10-21 03:00:00  0.023810
7075 2015-10-21 04:00:00  0.000000
7076 2015-10-21 05:00:00 -0.023256
7077 2015-10-21 06:00:00  0.000000
print df.dtypes
timestamp    datetime64[ns]
DOGE                float64
dtype: object
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()


df['timestamp'] = df['timestamp'].dt.strftime('%Y-%m-%d %H:00:00')
print df
                timestamp      DOGE
7073  2015-10-21 02:00:00 -0.023256
7074  2015-10-21 03:00:00  0.023810
7075  2015-10-21 04:00:00  0.000000
7076  2015-10-21 05:00:00 -0.023256
7077  2015-10-21 06:00:00  0.000000
print df.dtypes
timestamp     object  **************
DOGE         float64
dtype: object

timeframe = pd.date_range(start=min_time, end=max_time, freq='H')
test = pd.DataFrame(timeframe, columns=['timestamp']) 
print test
            timestamp
0 2015-10-21 02:00:00
1 2015-10-21 03:00:00
2 2015-10-21 04:00:00
3 2015-10-21 05:00:00
4 2015-10-21 06:00:00

print test.dtypes
timestamp    datetime64[ns] ****************
dtype: object
print pd.merge(left=test, right=df, on='timestamp', how='left')
            timestamp  DOGE
0 2015-10-21 02:00:00   NaN
1 2015-10-21 03:00:00   NaN
2 2015-10-21 04:00:00   NaN
3 2015-10-21 05:00:00   NaN
4 2015-10-21 06:00:00   NaN

<强>解决方案

删除将datetime类型的列转换为string

变化:

df[TS] = pd.to_datetime(df[TS], unit='s').dt.strftime('%Y-%m-%d %H:00:00')

为:

df[TS] = pd.to_datetime(df[TS], unit='s')

这意味着(我评论转换为string):

print df.dtypes
timestamp    datetime64[ns] ***********
DOGE                float64
dtype: object

min_time = df['timestamp'].min()
max_time = df['timestamp'].max()


#df['timestamp'] = df['timestamp'].dt.strftime('%Y-%m-%d %H:00:00')
#print df
#print df.dtypes


timeframe = pd.date_range(start=min_time, end=max_time, freq='H')
test = pd.DataFrame(timeframe, columns=['timestamp']) 
print test.dtypes
timestamp    datetime64[ns]   ***********
dtype: object

print pd.merge(left=test, right=df, on='timestamp', how='left')
            timestamp      DOGE
0 2015-10-21 02:00:00 -0.023256
1 2015-10-21 03:00:00  0.023810
2 2015-10-21 04:00:00  0.000000
3 2015-10-21 05:00:00 -0.023256
4 2015-10-21 06:00:00  0.000000