我有类似以下数据框的内容,其中我有街道地址范围和街道名称的非唯一组合。
import pandas as pd
df=pd.DataFrame()
df['BlockRange']=['100-150','100-150','100-150','100-150','200-300','200-300','300-400','300-400','300-400']
df['Street']=['Main','Main','Main','Main','Spruce','Spruce','2nd','2nd','2nd']
df
BlockRange Street
0 100-150 Main
1 100-150 Main
2 100-150 Main
3 100-150 Main
4 200-300 Spruce
5 200-300 Spruce
6 300-400 2nd
7 300-400 2nd
8 300-400 2nd
在3&#39组中的每一组中' - (100-150,Main),(200-300,Spruce)和(300-400,2nd) - 我希望每组中的一半记录得到一个块数等于块范围的中点和一半记录的块数等于块范围的中点加1(将其放在街道的另一侧)。
我知道这应该可以使用groupby转换来完成,但是我无法弄清楚如何这样做(我在将一个函数应用到groupby键时遇到了麻烦,' BlockRange& #39;)
我能够获得结果我只能通过循环遍历每个唯一的组来查找,这在我的完整数据集上运行需要一段时间。请参阅下面的我当前的解决方案以及我正在寻找的最终结果:
groups=df.groupby(['BlockRange','Street'])
#Write function that calculates the mid point of the block range
def get_mid(x):
block_nums=[int(y) for y in x.split('-')]
return sum(block_nums)/len(block_nums)
final=pd.DataFrame()
for groupkey,group in groups:
block_mid=get_mid(groupkey[0])
halfway_point=len(group)/2
group['Block']=0
group.iloc[:halfway_point]['Block']=block_mid
group.iloc[halfway_point:]['Block']=block_mid+1
final=final.append(group)
final
BlockRange Street Block
0 100-150 Main 125
1 100-150 Main 125
2 100-150 Main 126
3 100-150 Main 126
4 200-300 Spruce 250
5 200-300 Spruce 251
6 300-400 2nd 350
7 300-400 2nd 351
8 300-400 2nd 351
有关如何更有效地执行此操作的任何建议?也许使用groupby转换?
答案 0 :(得分:4)
您可以将apply
与自定义函数f
一起使用:
def f(x):
df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist()])
df = df.astype(int)
block_nums = df.sum(axis=1) / 2
x['Block'] = block_nums[0]
halfway_point=len(x)/2
x.iloc[halfway_point:, 2] = block_nums[0] + 1
return x
print df.groupby(['BlockRange','Street']).apply(f)
BlockRange Street Block
0 100-150 Main 125
1 100-150 Main 125
2 100-150 Main 126
3 100-150 Main 126
4 200-300 Spruce 250
5 200-300 Spruce 251
6 300-400 2nd 350
7 300-400 2nd 351
8 300-400 2nd 351
时序:
In [32]: %timeit orig(df)
__main__:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:27: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:28: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
1 loops, best of 3: 290 ms per loop
In [33]: %timeit new(df)
100 loops, best of 3: 10.2 ms per loop
测试:
print df
df1 = df.copy()
def orig(df):
groups=df.groupby(['BlockRange','Street'])
#Write function that calculates the mid point of the block range
def get_mid(x):
block_nums=[int(y) for y in x.split('-')]
return sum(block_nums)/len(block_nums)
final=pd.DataFrame()
for groupkey,group in groups:
block_mid=get_mid(groupkey[0])
halfway_point=len(group)/2
group['Block']=0
group.iloc[:halfway_point]['Block']=block_mid
group.iloc[halfway_point:]['Block']=block_mid+1
final=final.append(group)
return final
def new(df):
def f(x):
df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist() ])
df = df.astype(int)
block_nums = df.sum(axis=1) / 2
x['Block'] = block_nums[0]
halfway_point=len(x)/2
x.iloc[halfway_point:, 2] = block_nums[0] + 1
return x
return df.groupby(['BlockRange','Street']).apply(f)
print orig(df)
print new(df1)
答案 1 :(得分:1)
为了进行比较,请注意您可以在没有apply
的情况下执行此操作:
ss = df["BlockRange"].str.split("-")
midnum = (ss.str[1].astype(float) + ss.str[0].astype(float))//2
grouped = df.groupby(["BlockRange", "Street"])
df["Block"] = midnum + (grouped.cumcount()>= grouped["Street"].transform(len) // 2)
给了我
>>> df
BlockRange Street Block
0 100-150 Main 125
1 100-150 Main 125
2 100-150 Main 126
3 100-150 Main 126
4 200-300 Spruce 250
5 200-300 Spruce 251
6 300-400 2nd 350
7 300-400 2nd 351
8 300-400 2nd 351
这是有效的,因为cumcount
和transform(len)
为我们提供了所需的部分:
>>> grouped.cumcount()
0 0
1 1
2 2
3 3
4 0
5 1
6 0
7 1
8 2
dtype: int64
>>> grouped.transform(len)
Block
0 4
1 4
2 4
3 4
4 2
5 2
6 3
7 3
8 3