Pandas groupby - 将不同的功能应用于每组中一半的记录

时间:2016-02-09 17:33:24

标签: python pandas group-by

我有类似以下数据框的内容,其中我有街道地址范围和街道名称的非唯一组合。

import pandas as pd
df=pd.DataFrame()
df['BlockRange']=['100-150','100-150','100-150','100-150','200-300','200-300','300-400','300-400','300-400']
df['Street']=['Main','Main','Main','Main','Spruce','Spruce','2nd','2nd','2nd']
df
  BlockRange  Street
0    100-150    Main
1    100-150    Main
2    100-150    Main
3    100-150    Main
4    200-300  Spruce
5    200-300  Spruce
6    300-400     2nd
7    300-400     2nd
8    300-400     2nd

在3&#39组中的每一组中' - (100-150,Main),(200-300,Spruce)和(300-400,2nd) - 我希望每组中的一半记录得到一个块数等于块范围的中点和一半记录的块数等于块范围的中点加1(将其放在街道的另一侧)。

我知道这应该可以使用groupby转换来完成,但是我无法弄清楚如何这样做(我在将一个函数应用到groupby键时遇到了麻烦,' BlockRange& #39;)

我能够获得结果我只能通过循环遍历每个唯一的组来查找,这在我的完整数据集上运行需要一段时间。请参阅下面的我当前的解决方案以及我正在寻找的最终结果:

groups=df.groupby(['BlockRange','Street'])

#Write function that calculates the mid point of the block range
def get_mid(x):
    block_nums=[int(y) for y in x.split('-')]
    return sum(block_nums)/len(block_nums)

final=pd.DataFrame()
for groupkey,group in groups:
    block_mid=get_mid(groupkey[0])
    halfway_point=len(group)/2
    group['Block']=0
    group.iloc[:halfway_point]['Block']=block_mid
    group.iloc[halfway_point:]['Block']=block_mid+1
    final=final.append(group)

final
  BlockRange  Street  Block
0    100-150    Main    125
1    100-150    Main    125
2    100-150    Main    126
3    100-150    Main    126
4    200-300  Spruce    250
5    200-300  Spruce    251
6    300-400     2nd    350
7    300-400     2nd    351
8    300-400     2nd    351

有关如何更有效地执行此操作的任何建议?也许使用groupby转换?

2 个答案:

答案 0 :(得分:4)

您可以将apply与自定义函数f一起使用:

def f(x):
    df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist()])
    df = df.astype(int)
    block_nums = df.sum(axis=1) / 2
    x['Block'] = block_nums[0]
    halfway_point=len(x)/2
    x.iloc[halfway_point:, 2] = block_nums[0] + 1
    return x

print df.groupby(['BlockRange','Street']).apply(f)

  BlockRange  Street  Block
0    100-150    Main    125
1    100-150    Main    125
2    100-150    Main    126
3    100-150    Main    126
4    200-300  Spruce    250
5    200-300  Spruce    251
6    300-400     2nd    350
7    300-400     2nd    351
8    300-400     2nd    351  

时序:

In [32]: %timeit orig(df)
__main__:26: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:27: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:28: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
1 loops, best of 3: 290 ms per loop

In [33]: %timeit new(df)
100 loops, best of 3: 10.2 ms per loop  

测试:

print df
df1 = df.copy()

def orig(df):
    groups=df.groupby(['BlockRange','Street'])

    #Write function that calculates the mid point of the block range
    def get_mid(x):
        block_nums=[int(y) for y in x.split('-')]
        return sum(block_nums)/len(block_nums)
    final=pd.DataFrame()

    for groupkey,group in groups:
        block_mid=get_mid(groupkey[0])
        halfway_point=len(group)/2
        group['Block']=0
        group.iloc[:halfway_point]['Block']=block_mid
        group.iloc[halfway_point:]['Block']=block_mid+1
        final=final.append(group)
    return final    

def new(df):
    def f(x):
        df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist() ])
        df = df.astype(int)
        block_nums = df.sum(axis=1) / 2
        x['Block'] = block_nums[0]
        halfway_point=len(x)/2
        x.iloc[halfway_point:, 2] = block_nums[0] + 1
        return x

    return df.groupby(['BlockRange','Street']).apply(f)

print orig(df)
print new(df1)   

答案 1 :(得分:1)

为了进行比较,请注意您可以在没有apply的情况下执行此操作:

ss = df["BlockRange"].str.split("-")
midnum = (ss.str[1].astype(float) + ss.str[0].astype(float))//2
grouped = df.groupby(["BlockRange", "Street"])
df["Block"] = midnum + (grouped.cumcount()>= grouped["Street"].transform(len) // 2)

给了我

>>> df
  BlockRange  Street  Block
0    100-150    Main    125
1    100-150    Main    125
2    100-150    Main    126
3    100-150    Main    126
4    200-300  Spruce    250
5    200-300  Spruce    251
6    300-400     2nd    350
7    300-400     2nd    351
8    300-400     2nd    351

这是有效的,因为cumcounttransform(len)为我们提供了所需的部分:

>>> grouped.cumcount()
0    0
1    1
2    2
3    3
4    0
5    1
6    0
7    1
8    2
dtype: int64
>>> grouped.transform(len)
   Block
0      4
1      4
2      4
3      4
4      2
5      2
6      3
7      3
8      3