尝试使用sklearn和panads创建具有交叉验证的决策树。
我的问题在下面的代码中,交叉验证分割数据,然后我将其用于训练和测试。我将尝试通过在不同的最大深度设置下重新创建n次来找到树的最佳深度。在使用交叉验证时,我应该使用k folds CV,如果是这样,我将如何在我的代码中使用它?
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn import cross_validation
features = ["fLength", "fWidth", "fSize", "fConc", "fConc1", "fAsym", "fM3Long", "fM3Trans", "fAlpha", "fDist", "class"]
df = pd.read_csv('magic04.data',header=None,names=features)
df['class'] = df['class'].map({'g':0,'h':1})
x = df[features[:-1]]
y = df['class']
x_train,x_test,y_train,y_test = cross_validation.train_test_split(x,y,test_size=0.4,random_state=0)
depth = []
for i in range(3,20):
clf = tree.DecisionTreeClassifier(max_depth=i)
clf = clf.fit(x_train,y_train)
depth.append((i,clf.score(x_test,y_test)))
print depth
这里是我正在使用的数据的链接,以防任何人。 https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
答案 0 :(得分:20)
在您的代码中,您将创建静态训练测试分割。如果要通过交叉验证选择最佳深度,可以在for循环中使用sklearn.cross_validation.cross_val_score
。
您可以阅读sklearn's documentation了解详情。
以下是使用CV更新代码:
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.cross_validation import cross_val_score
from pprint import pprint
features = ["fLength", "fWidth", "fSize", "fConc", "fConc1", "fAsym", "fM3Long", "fM3Trans", "fAlpha", "fDist", "class"]
df = pd.read_csv('magic04.data',header=None,names=features)
df['class'] = df['class'].map({'g':0,'h':1})
x = df[features[:-1]]
y = df['class']
# x_train,x_test,y_train,y_test = cross_validation.train_test_split(x,y,test_size=0.4,random_state=0)
depth = []
for i in range(3,20):
clf = tree.DecisionTreeClassifier(max_depth=i)
# Perform 7-fold cross validation
scores = cross_val_score(estimator=clf, X=x, y=y, cv=7, n_jobs=4)
depth.append((i,scores.mean()))
print(depth)
或者,你可以使用sklearn.grid_search.GridSearchCV
而不是自己编写for循环,特别是如果你想优化多个超参数。
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.model_selection import GridSearchCV
features = ["fLength", "fWidth", "fSize", "fConc", "fConc1", "fAsym", "fM3Long", "fM3Trans", "fAlpha", "fDist", "class"]
df = pd.read_csv('magic04.data',header=None,names=features)
df['class'] = df['class'].map({'g':0,'h':1})
x = df[features[:-1]]
y = df['class']
parameters = {'max_depth':range(3,20)}
clf = GridSearchCV(tree.DecisionTreeClassifier(), parameters, n_jobs=4)
clf.fit(X=x, y=y)
tree_model = clf.best_estimator_
print (clf.best_score_, clf.best_params_)
编辑更改了GridSearchCV的导入方式,以适应learn2day的评论。