我有以下逻辑模型
public class DropboxSampleActivity extends Activity {
private ListView listViewDropbox;
private ArrayAdapter<String> adapter = null;
private static String URL_FILE_DROPBOX = "https://www.dropbox.com/s/xxxxxxxxxxxx/xxxxxxxxxxxx?dl=1";
private ArrayList<String> listElementItem;
@Override
protected void onCreate(Bundle savedInstanceState) {
setContentView(R.layout.activity_dropbox_list);
super.onCreate(savedInstanceState);
listViewDropbox = (ListView) findViewById(R.id.listViewDropbox);
DropboxItemAsyncTask dropboxItemAsyncTask = new DropboxItemAsyncTask();
dropboxItemAsyncTask.execute();
}
class DropboxItemAsyncTask extends AsyncTask {
protected Integer doInBackground(Object[] params) {
try {
listElementItem = new ArrayList<>();
URLConnection conn = new URL(URL_FILE_DROPBOX).openConnection();
conn.connect();
InputStream is = conn.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(
is, "UTF-8"), 8);
String line = null;
while ((line = reader.readLine()) != null) {
listElementItem.add(line);
}
is.close();
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
@Override
protected void onPostExecute(Object o) {
if (adapter == null) {
adapter = new ArrayAdapter(DropboxSampleActivity.this,
android.R.layout.simple_list_item_1, listElementItem);
runOnUiThread(new Runnable() {
@Override
public void run() {
listViewDropbox.setAdapter(adapter);
}
});
} else {
runOnUiThread(new Runnable() {
@Override
public void run() {
adapter.notifyDataSetChanged();
}
});
}
}
};
我计算模型的&#34;得分&#34;,X,例如X = $ null.deviance- $ deviance。在这种情况下,X = 138.63-125.09。 现在,我想使用bootstrap来计算得分的平均值和置信区间。我怎样才能在R?
中实现这一点答案 0 :(得分:1)
查看包boot
。下面是一个适合您案例的模拟示例:
library(boot)
x <- rnorm(100)
Y <- exp(x + rnorm(100)) > 1
datasim <- data.frame(Y, x)
dDeviance <- function(data, indices){
fit <- glm(formula = Y ~ ., family = binomial, data = data[indices, ])
with(fit, null.deviance - deviance)
}
boot(data = datasim, statistic = dDeviance, R = 100)
输出:
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = datasim, statistic = dDeviance, R = 100)
Bootstrap Statistics :
original bias std. error
t1* 41.02692 1.445287 9.712626