我有一个日志文件,其中包含1,001,623行格式:
[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
每个用新行分隔
我使用正则表达式循环它并提取我需要的信息(日期,id,产品)
for txt in logfile:
m = rg.search(txt)
if m:
l1=m.group(1)
l2=m.group(2)
l3=m.group(3)
dt=dt.append(pd.Series([l1]))
art=art.append(pd.Series([l2]))
usr=usr.append(pd.Series([l3]))
这在我只使用小样本的测试中工作得很好但是当我使用整个集合时它已经运行了12个小时并且没有显示任何进展。然后,我将创建一个数据框来进行一些分析。有更好的方法吗?
编辑:
这是我打开日志文件的方式。
logfile = open("data/access.log", "r")
正则表达式
re1='.*?' # Non-greedy match on filler
re2='((?:(?:[0-2]?\\d{1})|(?:[3][01]{1}))[-:\\/.](?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Sept|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)[-:\\/.](?:(?:[1]{1}\\d{1}\\d{1}\\d{1})|(?:[2]{1}\\d{3})))(?![\\d])' # DDMMMYYYY 1
re3='.*?' # Non-greedy match on filler
re4='\\d+' # Uninteresting: int
re5='.*?' # Non-greedy match on filler
re6='\\d+' # Uninteresting: int
re7='.*?' # Non-greedy match on filler
re8='\\d+' # Uninteresting: int
re9='.*?' # Non-greedy match on filler
re10='(\\d+)' # Integer Number 1
re11='.*?' # Non-greedy match on filler
re12='(\\d+)' # Integer Number 2
rg = re.compile(re1+re2+re3+re4+re5+re6+re7+re8+re9+re10+re11+re12,re.IGNORECASE|re.DOTALL)
m = rg.search(txt)
答案 0 :(得分:1)
您可以使用pandas
。首先按strip
剥离[]
,然后转换to_datetime
。
然后解析id
和prod
并最后通过concat
合并在一起:
import pandas as pd
import io
temp=u"""[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
[02/Jan/2012:09:07:32] "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352"""
#change io.StringIO(temp) to 'filename.csv'
df = pd.read_csv(io.StringIO(temp), sep="\s*", engine='python', header=None,
names=['date','get','data','http','no1','no2'])
#format - http://strftime.org/
df['date'] = pd.to_datetime(df['date'].str.strip('[]'), format="%d/%b/%Y:%H:%M:%S")
#split Dataframe
df1 = pd.DataFrame([ x.split('=') for x in df['data'].tolist() ], columns=['c','id','prod'])
#split Dataframe
df2 = pd.DataFrame([ x.split('&') for x in df1['id'].tolist() ], columns=['id', 'no3'])
print df
date get data http no1 no2
0 2012-01-02 09:07:32 "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
1 2012-01-02 09:07:32 "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
2 2012-01-02 09:07:32 "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
3 2012-01-02 09:07:32 "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
4 2012-01-02 09:07:32 "GET /click?id=162&prod=5475 HTTP/1.1" 200 4352
print df1
c id prod
0 /click?id 162&prod 5475
1 /click?id 162&prod 5475
2 /click?id 162&prod 5475
3 /click?id 162&prod 5475
4 /click?id 162&prod 5475
print df2
id no3
0 162 prod
1 162 prod
2 162 prod
3 162 prod
4 162 prod
df = pd.concat([df['date'], df1['prod'], df2['id']], axis=1)
print df
date prod id
0 2012-01-02 09:07:32 5475 162
1 2012-01-02 09:07:32 5475 162
2 2012-01-02 09:07:32 5475 162
3 2012-01-02 09:07:32 5475 162
4 2012-01-02 09:07:32 5475 162