Rolling_mean在一段时间内与熊猫一起

时间:2016-01-08 13:00:12

标签: python pandas time-series

TL; DR:有解决方案:

  • 实时向DataFrame添加数据(非常量采样率:每次新数据之间有时为1秒,有时为0.2秒,有时为2秒等)
  • 能够在固定的5秒窗口上计算rolling_mean(无论此窗口中是否有10个或100个或仅2个样本)

更确切地说:

import pandas as pd, time
df = pd.DataFrame(columns = ['x'])

for i in range(10):
    df.ix[pd.datetime.now()] = {'x': 10 + i}
    time.sleep(0.2)         # here 0.2 seconds between each new data...

df.ix[pd.datetime.now()] = {'x': 20}
time.sleep(1)               # here 1 second...
df.ix[pd.datetime.now()] = {'x': 21}
time.sleep(3)               # here 3 seconds...
df.ix[pd.datetime.now()] = {'x': 22}

df

提供此功能
                          x
2016-01-08 13:57:10.679  10
2016-01-08 13:57:10.882  11
2016-01-08 13:57:11.085  12
2016-01-08 13:57:11.287  13
2016-01-08 13:57:11.489  14
2016-01-08 13:57:11.691  15
2016-01-08 13:57:11.893  16
2016-01-08 13:57:12.095  17
2016-01-08 13:57:12.297  18
2016-01-08 13:57:12.499  19
2016-01-08 13:57:12.701  20
2016-01-08 13:57:13.703  21
2016-01-08 13:57:16.706  22

pd.rolling_mean(df, 5)

                          x
2016-01-08 13:57:10.679 NaN
2016-01-08 13:57:10.882 NaN
2016-01-08 13:57:11.085 NaN
2016-01-08 13:57:11.287 NaN
2016-01-08 13:57:11.489  12
2016-01-08 13:57:11.691  13
2016-01-08 13:57:11.893  14
2016-01-08 13:57:12.095  15
2016-01-08 13:57:12.297  16
2016-01-08 13:57:12.499  17
2016-01-08 13:57:12.701  18
2016-01-08 13:57:13.703  19
2016-01-08 13:57:16.706  20

当然pd.rolling_mean(df, 5)计算5行的滚动均值,这不是我想要的:我想要5秒的时间

一个解决方案是df.resample('1S', ...),但由于我想在每次添加新数据时计算新的rolling_mean表示我应该.resample(...)整个DataFrame每分钟很多时间,这真的非常耗时,而且我认为它不是一个干净的解决方案。(在我的实际用例中,DataFrame很大)。

这是一个干净的解决方案吗?

2 个答案:

答案 0 :(得分:0)

当您添加新数据时,如何在您的df中存储滚动平均值?

import datetime as dt
latest = pd.datetime.now()
five_secs = datetime.timedelta(seconds=5)
new_x=99
df.ix[latest] = {'x':new_x,
                 'five_second_mean':df[df.index > latest - five_secs].x.append(pd.Series(new_x).mean()}

答案 1 :(得分:0)

考虑使用series apply函数捕获特定行的最后5秒。使用此方法,您可以在所有数据完成后运行一次。只有你的设置警告你不能在索引上使用apply(),所以使用临时时间戳列(等于索引值):

import datetime
...

# SERIES MEAN FUNCTION
def runMean(row):
    ser = df.x[(df['timeval'] > row - datetime.timedelta(seconds=5)) &
               (df['timeval'] <= row)]
    return ser.mean()

# APPLY FUNCTION
df['timeval'] = df.index
df['last5secMean'] = df['timeval'].apply(runMean)

df = df[['x','last5secMean']]