我希望此代码“正常工作”:
def main():
c = Castable()
print c/3
print 2-c
print c%7
print c**2
print "%s" % c
print "%i" % c
print "%f" % c
当然,最简单的方法是编写int(c)/3
,但我想为配置迷你语言启用更简单的perl-ish语法。
值得注意的是,如果我使用“旧式”类(不从对象继承),我可以通过定义__coerce__
方法非常简单地做到这一点,但是旧式类已被弃用并且将是在python3中删除。
当我使用新式类做同样的事情时,我收到此错误:
TypeError: unsupported operand type(s) for /: 'Castable' and 'int'
我相信这是设计的,但是我怎样才能用新式的类来模拟旧式的__coerce__
行为呢?你可以在下面找到我目前的解决方案,但它非常难看且冗长。
这是相关文件:(我认为)
奖励积分:
print pow(c, 2, 100)
答案 0 :(得分:9)
如果您希望__div__
正常工作,则需要定义c/3
。 Python不会首先将您的对象转换为数字。
答案 1 :(得分:6)
这是有效的,经过几次改进(@jchl的道具)后不那么严重,但似乎它应该是不必要的,特别是考虑到你可以通过“旧式”课程免费获得。
我仍在寻找更好的答案。如果没有更好的方法,这在我看来就像是Python语言中的回归。
def ops_list():
"calculate the list of overloadable operators"
#<type 'object'> has functions but no operations
not_ops = dir(object)
#calculate the list of operation names
ops = set()
for mytype in (int, float, str):
for op in dir(mytype):
if op.endswith("__") and op not in not_ops:
ops.add(op)
return sorted(ops)
class MetaCastable(type):
__ops = ops_list()
def __new__(mcs, name, bases, dict):
#pass any undefined ops to self.__op__
def add_op(op):
if op in dict:
return
fn = lambda self, *args: self.__op__(op, args)
fn.__name__ = op
dict[op] = fn
for op in mcs.__ops:
add_op( op )
return type.__new__(mcs, name, bases, dict)
class Castable(object):
__metaclass__ = MetaCastable
def __str__(self):
print "str!"
return "<Castable>"
def __int__(self):
print "int!"
return 42
def __float__(self):
print "float!"
return 2.718281828459045
def __op__(self, op, args):
try:
other = args[0]
except IndexError:
other = None
print "%s %s %s" % (self, op, other)
self, other = coerce(self, other)
return getattr(self, op)(*args)
def __coerce__(self, other):
print "coercing like %r!" % other
if other is None: other = 0.0
return (type(other)(self), other)
答案 2 :(得分:3)
class MetaCastable(type):
__binary_ops = (
'add', 'sub', 'mul', 'floordiv', 'mod', 'divmod', 'pow', 'lshift',
'rshift', 'and', 'xor', 'or', 'div', 'truediv',
)
__unary_ops = ( 'neg', 'pos', 'abs', 'invert', )
def __new__(mcs, name, bases, dict):
def make_binary_op(op):
fn = lambda self, other: self.__op__(op, other)
fn.__name__ = op
return fn
for opname in mcs.__binary_ops:
for op in ( '__%s__', '__r%s__' ):
op %= opname
if op in dict:
continue
dict[op] = make_binary_op(op)
def make_unary_op(op):
fn = lambda self: self.__op__(op, None)
fn.__name__ = op
return fn
for opname in mcs.__unary_ops:
op = '__%s__' % opname
if op in dict:
continue
dict[op] = make_unary_op(op)
return type.__new__(mcs, name, bases, dict)
class Castable(object):
__metaclass__ = MetaCastable
def __str__(self):
print "str!"
return "<Castable>"
def __int__(self):
print "int!"
return 42
def __float__(self):
print "float!"
return 2.718281828459045
def __op__(self, op, other):
if other is None:
print "%s(%s)" % (op, self)
self, other = coerce(self, 0.0)
return getattr(self, op)()
else:
print "%s %s %s" % (self, op, other)
self, other = coerce(self, other)
return getattr(self, op)(other)
def __coerce__(self, other):
print "coercing like %r!" % other
return (type(other)(self), other)
答案 3 :(得分:0)
class Castable(object):
def __div__(self, other):
return 42 / other
答案 4 :(得分:0)
新样式类比旧样式类运行得更快,更精确。因此,没有更昂贵的__getattr__
,__getattribute__
,__coerce__
要求任何廉价的理由和可疑的顺序。
旧样式__coerce__
也存在问题,即使您已经为某些特殊目的重载了运算符方法,它也会被调用。并且它要求转换为相同的常见类型,并且仅限于某些二进制操作。考虑一下int / float / string的所有其他方法和属性 - 以及pow()。由于所有这些限制,PY3中缺少coerce
。问题示例旨在实现相当广泛的虚拟化。
对于新的样式类,它只是一个循环来提供许多类似的&#34;代码很少的方法,或者将这些调用路由到虚拟处理程序,然后以正确和细粒度的方式快速精确定义和子类化。这不是Python语言中的回归&#34;。
但是,我不会使用其他答案中显示的元类,仅用于这样的循环或提供简单的基类行为。那将是用大锤打破坚果。
这是一个用于虚拟化&#34;变体&#34;
的示例助手def Virtual(*methods):
"""Build a (new style) base or mixin class, which routes method or
operator calls to one __virtualmeth__ and attribute lookups to
__virtualget__ and __virtualset__ optionally.
*methods (strings, classes): Providing method names to be routed
"""
class VirtualBase(object):
def __virtualmeth__(self, methname, *args, **kw):
raise NotImplementedError
def _mkmeth(methname, thing):
if not callable(thing):
prop = property(lambda self:self.__virtualget__(methname),
lambda self, v:self.__virtualset__(methname, v))
return prop
def _meth(self, *args, **kw):
return self.__virtualmeth__(methname, *args, **kw)
_meth.__name__ = methname
return _meth
for m in methods:
for name, thing in (isinstance(m, str) and
{m:lambda:None} or m.__dict__).items():
if name not in ('__new__', '__init__', '__setattr__', ##'__cmp__',
'__getattribute__', '__doc__', ): ##'__getattr__',
setattr(VirtualBase, name, _mkmeth(name, thing))
return VirtualBase
这是一个用例示例:Anaphor! (PY2和PY3):
import operator
class Anaphor(Virtual(int, float, str)):
"""remember a sub-expression comfortably:
A = Anaphor() # at least per thread / TLS
if re.search(...) >> A:
print(A.groups(), +A)
if A(x % 7) != 0:
print(A, 1 + A, A < 3.0, A.real, '%.2f' % A, +A)
"""
value = 0
def __virtualmeth__(self, methname, *args, **kw):
try: r = getattr(self.value, methname)(*args, **kw)
except AttributeError:
return getattr(operator, methname)(self.value, *args, **kw)
if r is NotImplemented: # simple type -> coerce
try: tcommon = type(self.value + args[0]) # PY2 coerce
except: return NotImplemented
return getattr(tcommon(self.value), methname)(*args, **kw)
return r
def __call__(self, value):
self.value = value
return value
__lshift__ = __rrshift__ = __call__ # A << x; x >> A
def __pos__(self): # real = +A
return self.value
def __getattr__(self, name):
return getattr(self.value, name)
def __repr__(self):
return '<Anaphor:%r>' % self.value
无缝地它还处理3-arg opertor pow()
:-):
>>> A = Anaphor()
>>> x = 1
>>> if x + 11 >> A:
... print repr(A), A, +A, 'y' * A, 3.0 < A, pow(A, 2, 100)
...
<Anaphor:12> 12 12 yyyyyyyyyyyy True 44