I have the following passing yard corresponding to each team data. At first I import the data and modify the data frame.
> data = read.table("passing.txt",header = TRUE)
> data$base = data[,1]
> data = data[2:12]
> data
X2005Season X2006Season X2007Season X2008Season X2009Season X2010Season
1 4437 3662 4065 4674 4016 2921
2 2679 2371 3296 3336 3571 3567
3 3088 3435 3035 2808 3419 3335
4 2002 3281 3362 3061 3473 3015
5 3766 3795 4334 3813 4180 4124
6 3578 3058 3154 3177 4019 3885
7 2848 3820 3878 2960 3168 3810
8 3106 3027 3463 3025 3490 3913
9 3677 4119 3755 3911 4089 3906
10 2926 3733 3071 3301 4148 3601
11 4036 3962 3233 2947 2686 3268
12 1898 2688 2320 3379 3052 3356
13 3047 2898 3726 2380 2076 2989
14 4096 4308 4033 4094 4515 4609
15 3341 3836 4105 3789 4287 4042
16 3810 3000 3181 3129 2922 2968
17 3495 3262 3005 3858 4338 4519
18 3227 2799 3584 4471 3627 4038
19 2642 3153 3014 3303 2380 3242
20 4120 3400 4731 3569 4436 3847
21 3582 2420 2631 2369 2557 3180
22 3597 2596 2878 2819 3031 3107
23 2515 2719 2634 3040 2515 3158
24 3146 3123 2745 2956 4156 3097
25 3300 3287 3031 3632 3170 3527
26 3343 4503 4314 4977 4355 4441
27 3820 3833 4012 2406 2890 3767
28 3458 3054 3964 2617 3503 3341
29 2890 2798 3357 3619 2975 3361
30 3271 3264 2735 3158 2799 2289
31 3190 2882 3328 3332 3356 3065
32 2237 2778 3751 4267 4654 4144
X2011Season X2012Season X2013Season X2014Season base
1 3567 3005 4002 3808 ArizonaCardinals
2 4192 4509 4243 4553 AtlantaFalcons
3 3423 3739 3590 3819 BaltimoreRavens
4 3011 2999 4281 3792 ChicagoBears
5 4924 4049 4268 4261 GreenBayPackers
6 4734 3825 3588 4272 NewYorkGiants
7 4814 4927 4482 4030 DetroitLions
8 3773 3422 3751 4047 WashingtonRedskins
9 4110 3791 4110 4356 PhiladelphiaEagles
10 4054 3787 4017 4825 PittsburghSteelers
11 2870 3550 3125 3400 StLouisRams
12 2930 3298 2979 3063 SanFrancisco49ers
13 3090 3435 4047 3465 ClevelandBrowns
14 2995 4128 3725 4894 IndianapolisColts
15 4201 4729 3954 3784 DallasCowboys
16 3080 2713 3340 3182 KansasCityChiefs
17 4426 3295 4328 4098 SanDiegoChargers
18 2434 4534 5444 4661 DenverBroncos
19 3297 2891 2932 2946 NewYorkJets
20 5084 4662 4087 4121 NewEnglandPatriots
21 3962 4084 3340 3275 OaklandRaiders
22 3923 3323 3496 3412 TennesseeTitans
23 3703 3269 3103 3614 BuffaloBills
24 2957 2751 3427 3244 MinnesotaVikings
25 3091 3182 3567 3729 Miamidolphins
26 5347 4997 4918 4764 NewOrleansSaints
27 3340 3578 4136 3421 CincinnatiBengals
28 3105 3031 3236 3250 SeattleSeahawks
29 3650 3983 2820 3297 TampaBayBuccaneers
30 3829 3683 3043 3511 CarolinaPanthers
31 2179 3419 3441 3001 JacksonvilleJaguars
32 3506 3830 3813 3352 HoustonTexans
Now I get the column means for each column with:
> x = colMeans(data[1:10])
> x
X2005Season X2006Season X2007Season X2008Season X2009Season X2010Season
3255.250 3277.000 3428.906 3380.531 3495.406 3544.750
X2011Season X2012Season X2013Season X2014Season
3675.031 3700.562 3769.781 3788.969
However, when I plot the x with
> plot(x)
The y-axis are with correct labels but I do want the x - axis to labels to be 2005, 2006, 2007, 2008, ... , 2014 respectively. I tried to use axis() to modify labels but that did not work. Can anyone tell me what command should I look at or what should I do? Sorry but I am new to R.
答案 0 :(得分:3)
An alternative ggplot
approach would be
require(ggplot2)
# Test data frame
data <- data.frame(matrix(runif(1000, 1000, 3000), ncol=10))
colnames(data) <- paste0("x", 2005:2014, "Season")
ggplot(data.frame(season=colnames(data), mean=colMeans(data)))+ # New DF with the means
geom_point(aes(x=season, y=mean))+
theme(axis.text.x=element_text(angle=25, hjust=1)) # Optional
答案 1 :(得分:2)
first you need to do this
plot(x,axes=FALSE)
then draw x axis and y axis separately
axis(1,at=seq(2005,2014,1)) #to draw x axis
axis(2) #to draw y axis .since your y axis is well computed dont need to use 'at'