我还在学习python的方法,这有点复杂,
有这样的表pandas.DataFrame
:
SAMPLE_TIME TempBottom TempTop TempOut State Bypass
0 2015-07-15 16:41:56 48.625 55.812 43.875 1 1
1 2015-07-15 16:42:55 48.750 55.812 43.875 1 1
2 2015-07-15 16:43:55 48.937 55.812 43.875 1 1
3 2015-07-15 16:44:56 49.125 55.812 43.812 1 1
4 2015-07-15 16:45:55 49.312 55.812 43.812 1 1
这是一个大数据集,每隔几分钟就会有一些条目。 我试图获得每天的范围,所以基本上忽略了时间和分裂天数
我忘了提到这是使用pd.read_csv()
从csv导入的,我认为这意味着SMAPLE_TIME
不是DatetimeIndex
答案 0 :(得分:2)
你可以
df['SAMPLE_TIME'] = pd.to_datetime(df['SAMPLE_TIME'])
df.set_index('SAMPLE_TIME', inplace=True)
df_by_days = df.groupby(pd.TimeGrouper('D')).agg()
应用the docs中描述的各种聚合函数。如果您提供有关您想要汇总的内容以及如何汇总的详细信息,请尽快添加示例。
答案 1 :(得分:2)
您可以尝试:
#set to datetimeindex
df['SAMPLE_TIME'] = pd.to_datetime(df['SAMPLE_TIME'])
print df
SAMPLE_TIME TempBottom TempTop TempOut State Bypass
0 2015-07-05 16:41:56 48.625 55.812 43.875 1 1
1 2015-07-05 16:42:55 48.750 55.812 43.875 1 1
2 2015-07-23 16:43:55 48.937 55.812 43.875 1 1
3 2015-07-23 16:44:56 49.125 55.812 43.812 1 1
4 2015-07-25 16:45:55 49.312 55.812 43.812 1 1
df = df.set_index('SAMPLE_TIME')
g1 = df.groupby(lambda x: x.day)
for d,g in g1:
print d
print g
5
TempBottom TempTop TempOut State Bypass
SAMPLE_TIME
2015-07-05 16:41:56 48.625 55.812 43.875 1 1
2015-07-05 16:42:55 48.750 55.812 43.875 1 1
23
TempBottom TempTop TempOut State Bypass
SAMPLE_TIME
2015-07-23 16:43:55 48.937 55.812 43.875 1 1
2015-07-23 16:44:56 49.125 55.812 43.812 1 1
25
TempBottom TempTop TempOut State Bypass
SAMPLE_TIME
2015-07-25 16:45:55 49.312 55.812 43.812 1 1
或者您可以按天分组并按总和汇总:
df = df.set_index('SAMPLE_TIME')
g1 = df.groupby(lambda x: x.day).agg(sum)
print g1
TempBottom TempTop TempOut State Bypass
5 97.375 111.624 87.750 2 2
23 98.062 111.624 87.687 2 2
25 49.312 55.812 43.812 1 1
或按年份,月份和日期分组并按总和汇总:
df['SAMPLE_TIME'] = pd.to_datetime(df['SAMPLE_TIME'])
df = df.set_index('SAMPLE_TIME')
g1 = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).agg(sum)
print g1
TempBottom TempTop TempOut State Bypass
2015 7 5 97.375 111.624 87.750 2 2
23 98.062 111.624 87.687 2 2
25 49.312 55.812 43.812 1 1