滚动总和不同大小的窗口与更改组R

时间:2015-12-07 12:46:32

标签: r sum data.table dplyr

我已经在本网站上阅读了关于滚动总和的所有Q& A但我无法理解大多数复杂的代码,因此我的调整技巧有限。 我尝试实施一些建议的解决方案,hereherehere等,但是我得到错误或计算机崩溃,即使我只使用1,000行和3列。因此很清楚,我搞砸了代码。

我的数据看起来像这样(前50行通过dput)。总数据集大约为100,000行

           structure(list(pnum = c("4778744", "4778744", "4778744", "4832724", 
"4840655", "4854957", "4952026", "4832724", "4832724", "4840655", 
"4952026", "4854957", "4952026", "4979975", "5062877", "5062877", 
"4979975", "4979975", "4979975", "5093287", "5148510", "5093287", 
"5148510", "5093287", "5148510", "5093287", "5148510", "5093287", 
"5148510", "5093287", "5148510", "5093287", "5148510", "5212120", 
"5375012", "5168079", "5375012", "5212120", "5212120", "5168079", 
"4811345", "4851990", "4947366", "5142672", "5317715", "4878166", 
"4851990", "5142672", "5317715", "4878166", "5142672", "5317715", 
"4878166", "5142672", "5317715", "4878166", "5142672", "5317715", 
"4878166", "5185878", "4926323", "4926323", "4926323", "4926323", 
"5185878", "4926323", "4926323", "4926323", "4926323", "4926323", 
"4926323", "5129067", "5136697", "5210841", "5237700", "5237700", 
"5237700", "5247644", "5805912", "5828869", "5357626", "5247644", 
"5805912", "5828869", "5357626"), ID = c("03859643-1", "04488864-4", 
"04560399-1", "03859643-1", "03859643-1", "03859643-1", "03859643-1", 
"03901719-2", "04086089-2", "04086089-2", "04407934-2", "04488864-4", 
"04952026-3", "03859643-1", "03859643-1", "03901719-2", "03912481-3", 
"03940277-1", "04979975-2", "03859643-1", "03859643-1", "03864113-1", 
"03864113-1", "04877300-1", "04877300-1", "04877300-3", "04877300-3", 
"05040862-3", "05040862-3", "05093287-4", "05093287-4", "05093287-6", 
"05093287-6", "03859643-1", "03859643-1", "03859643-1", "03870399-2", 
"03901719-2", "03923529-1", "04784976-1", "03860454-2", "03860454-2", 
"03860454-2", "03860454-2", "03860454-2", "03860454-2", "04761567-2", 
"04870622-2", "04870622-2", "04870622-2", "04878166-2", "04878166-2", 
"04878166-2", "04878166-3", "04878166-3", "04878166-3", "04878166-5", 
"04878166-5", "04878166-5", "03860454-2", "03860454-2", "04610004-1", 
"04734852-2", "04734852-3", "04761567-2", "04761567-2", "04777587-1", 
"04835414-1", "04878166-2", "04926323-10", "04926323-5", "03860454-2", 
"03860454-2", "03860454-2", "03860454-2", "05237700-2", "05237700-3", 
"03860454-2", "03860454-2", "03860454-2", "03860454-2", "04731737-1", 
"04731737-1", "04731737-1", "04731737-1"), Time = c(1986L, 1986L, 
1986L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 
1988L, 1988L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1990L, 
1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 
1990L, 1990L, 1990L, 1990L, 1991L, 1991L, 1991L, 1991L, 1991L, 
1991L, 1991L, 1986L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 
1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 
1987L, 1987L, 1987L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 
1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1989L, 1989L, 1990L, 
1990L, 1990L, 1990L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 
1991L, 1991L)), .Names = c("pnum", "inventor", "pryear"), row.names = c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 325L, 
326L, 327L, 328L, 329L, 330L, 331L, 332L, 333L, 334L, 335L, 336L, 
337L, 338L, 339L, 340L, 341L, 342L, 343L, 344L, 345L, 346L, 347L, 
348L, 349L, 350L, 351L, 352L, 353L, 354L, 355L, 356L, 357L, 358L, 
359L, 360L, 361L, 362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L
), class = "data.frame")

多个inventors在名为pnum的特定年份的项目pryear上进行协作。我正在寻找三件事:

在@Thierry的评论之后,我更改了数据样本,以确保他指出的问题得到了处理。

  1. 每个发明人在当前pryear之前的x(比如3年)窗口中进行的项目数量,因此,如果当前项目的年份是1977年,我想要从1974年到1976年进行的项目数量包括在内。如果之前没有出现过,理想情况下结果为“0”。 @Alex here提供的答案可用于实现第一个目标。但正如评论中所讨论的那样,效率并不高(特别是因为我的时间范围是从1952年到2010年,超过50,000名发明者)。
  2. 每个发明人在同一时间窗口工作的不同发明人的总数
  3. 如果一个项目有多个发明家,我正在寻找每个发明人与在同一过去时间窗口内处理当前项目的其他发明人合作的次数

1 个答案:

答案 0 :(得分:0)

这是第一个问题的解决方案。你可以解决其他问题作为练习。

第一个解决方案仅使用dplyr。您可能会遇到大型数据集的问题。

library(dplyr)
df %>% 
  inner_join(
    df %>% 
      select(inventor, oldyear = pryear), 
    by = "inventor") %>% 
  filter(pryear - 3 <= oldyear, oldyear < pryear) %>% 
  group_by(inventor, pryear) %>% 
  summarise(projects = n())

第二个解决方案使用dplyr和数据库后端。这应该能够处理更大的数据集。请注意,代码非常相似。

library(RSQLite)
library(dplyr)
conn <- dbConnect(SQLite(), "test")
dbWriteTable(conn, "project", df)
src <- src_sqlite("test")
tbl(src, "project") %>% 
  inner_join(
    tbl(src, "project") %>% 
      select(inventor, oldyear = pryear), 
    by = "inventor") %>% 
  filter(pryear - 3 <= oldyear, oldyear < pryear) %>% 
  group_by(inventor, pryear) %>% 
  summarise(projects = n()) %>% 
  collect()