我正在尝试使用ipython建立一个不错的spark开发环境。首先启动ipython,然后:
import findspark
findspark.init()
from pyspark.conf import SparkConf
from pyspark.context import SparkContext
conf = SparkConf()
conf.setMaster('yarn-client')
sc = SparkContext(conf=conf)
这是来自应用程序UI,我可以看到执行程序在工作节点上。
然而,当我尝试这个时:
rdd = sc.textFile("/LOGS/201511/*/*")
rdd.first()
我明白了:
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, d142.dtvhadooptest.com): org.apache.spark.SparkException:
Error from python worker:
/bin/python: No module named pyspark
PYTHONPATH was:
/data/sdb/hadoop/yarn/local/usercache/hdfs/filecache/64/spark-assembly-1.4.1.2.3.2.0-2950-hadoop2.7.1.2.3.2.0-2950.jar
java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:392)
at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:163)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:86)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:130)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:73)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
任何人都可以帮助我吗?
答案 0 :(得分:6)
因此设置这两个额外配置就可以了。
conf.set('spark.yarn.dist.files','file:/usr/hdp/2.3.2.0-2950/spark/python/lib/pyspark.zip,file:/usr/hdp/2.3.2.0-2950/spark/python/lib/py4j-0.8.2.1-src.zip')
conf.setExecutorEnv('PYTHONPATH','pyspark.zip:py4j-0.8.2.1-src.zip')
答案 1 :(得分:1)
在cloudera CDH中
conf.set('spark.yarn.dist.files','file:/path/to/pyspark.zip,file:/path/to/py4j-0.8.2.1-src.zip')
conf.setExecutorEnv('PYTHONPATH','pyspark.zip:py4j-0.8.2.1-src.zip')
以上代码段解决了我的问题,但我没有权利更改spark应用程序代码。要解决,请检查您的PYTHONPATH是否添加了这两个拉链。在我的例子中,默认的PYTHONPATH在这些文件的路径中使用了硬编码的节点名称。使用下面我不需要更改应用程序代码
export PYTHONPATH=$PYTHONPATH:/opt/cloudera/parcels/CDH/lib/spark/python/lib/py4j-0.9-src.zip
export PYTHONPATH=$PYTHONPATH:/opt/cloudera/parcels/CDH/lib/spark/python/lib/pyspark.zip