值toDF不是org.apache.spark.rdd.RDD的成员

时间:2015-11-14 03:37:11

标签: sbt apache-spark-sql

例外:

val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
value toDF is not a member of org.apache.spark.rdd.RDD[Person]

这是TestApp.scala档案:

package main.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf


case class Record1(k: Int, v: String)


object RDDToDataFramesWithCaseClasses {

    def main(args: Array[String]) {
        val conf = new SparkConf().setAppName("Simple Spark SQL Application With RDD To DF")

        // sc is an existing SparkContext.
        val sc = new SparkContext(conf)

        val sqlContext = new SQLContext(sc)

        // this is used to implicitly convert an RDD to a DataFrame.
        import sqlContext.implicits._

        // Define the schema using a case class.
        // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,package main.scala

TestApp.scala

import org.apache.spark.SparkContext    
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf


case class Record1(k: Int, v: String)


object RDDToDataFramesWithCaseClasses {
    def main(args: Array[String]) {
        val conf = new SparkConf().setAppName("RDD To DF")

        // sc is an existing SparkContext.
        // you can use custom classes that implement the Product interface.
        case class Person(name: String, age: Int)

        // Create an RDD of Person objects and register it as a table.
        val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF() 
        people.registerTempTable("people")

        // SQL statements can be run by using the sql methods provided by sqlContext.
        val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

        // The results of SQL queries are DataFrames and support all the normal RDD operations.
        // The columns of a row in the result can be accessed by field index:
        teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

        // or by field name:
        teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)

        // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]

        teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)

        // Map("name" -> "Justin", "age" -> 19)

    }
}

SBT档案

name := "SparkScalaRDBMS"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.5.1"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.5.1"

5 个答案:

答案 0 :(得分:37)

现在我找到了原因,你应该在对象中定义case类,并在main函数中定义。 look at here

  

好的,我终于解决了这个问题。需要做两件事:

     
      
  1. 导入含义:请注意,只有在创建了org.apache.spark.sql.SQLContext的实例后才能执行此操作。它应该写成:

         

    val sqlContext= new org.apache.spark.sql.SQLContext(sc)

         

    import sqlContext.implicits._

  2.   
  3. 将case类移到方法之外:case类,使用它来定义DataFrame的模式,应该在需要它的方法之外定义。您可以在此处阅读更多相关信息: https://issues.scala-lang.org/browse/SI-6649

  4.   

答案 1 :(得分:4)

在Spark 2中,您需要从SparkSession中导入implicits:

val spark = SparkSession.builder().appName(appName).getOrCreate()
import spark.implicits._

创建SparkSession时,请参阅Spark documentation了解更多选项。

答案 2 :(得分:2)

您的代码有两个问题

  1. 对于Spark V 1.0,您需要导入import sqlContext.implicits._;如果使用Spark V 2.0或更高版本,则需要导入spark.implicits._

  2. 第二种情况下,类Record1(k:Int,v:String)必须位于main函数内部,而def main(args:Array [String]){     val conf = new SparkConf()。setAppName(“ RDD To DF”) …

}

答案 3 :(得分:0)

i.  scala> case class Employee(id: Int, name: String, age: Int)
defined class Employee
scala> val sqlContext= new org.apache.spark.sql.SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@1f94e3a

scala> import sqlContext.implicits._
import sqlContext.implicits._
scala> var empl1=   empl.map(_.split(",")).map(e=>Employee(e(0).trim.toInt,e(1),e(2).trim.toInt)).toDF
empl1: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]
scala> val allrecords = sqlContext.sql("SELECT * FROM employee")
allrecords: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]

scala> allrecords.show();
+----+--------+---+
|  id|    name|age|
+----+--------+---+
|1201|  satish| 25|
|1202| krishna| 28|
|1203|   amith| 39|
|1204|   javed| 23|
|1205|  prudvi| 23|
+----+--------+---+

答案 4 :(得分:0)

在scala工作表中运行spark时遇到此问题。基本上,由于工作表的性质,在这种情况下不能使用toDF()。而是使用spark.createDataFrame