我有一个较低的三角形数组,如B:
if (a <= 0 || b <= 0)
{
error("bad values");
}
cout << "the area is " << area(a, b)<<'\n';
我想将其翻转为:
B = np.array([[1,0,0,0],[.25,.75,0,0], [.1,.2,.7,0],[.2,.3,.4,.1]])
>>> B
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
也就是说,我想取所有正值,并在正值内反转,留下尾随零。这不是array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
所做的:
fliplr
任何提示?此外,我正在使用的实际数组类似于>>> np.fliplr(B)
array([[ 0. , 0. , 0. , 1. ],
[ 0. , 0. , 0.75, 0.25],
[ 0. , 0.7 , 0.2 , 0.1 ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])
而不是B.shape = (200,20,4,4)
。每个(4,4)
块看起来与上面的示例相同(在200个不同的条目中有不同的数字)。
答案 0 :(得分:8)
这个怎么样:
# row, column indices of the lower triangle of B
r, c = np.tril_indices_from(B)
# flip the column indices by subtracting them from r, which is equal to the number
# of nonzero elements in each row minus one
B[r, c] = B[r, r - c]
print(repr(B))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
相同的方法将推广到由多个下三角形子矩阵组成的任意 N 维数组:
# creates a (200, 20, 4, 4) array consisting of tiled copies of B
B2 = np.tile(B[None, None, ...], (200, 20, 1, 1))
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.25, 0.75, 0. , 0. ],
# [ 0.1 , 0.2 , 0.7 , 0. ],
# [ 0.2 , 0.3 , 0.4 , 0.1 ]])
r, c = np.tril_indices_from(B2[0, 0])
B2[:, :, r, c] = B2[:, :, r, r - c]
print(repr(B2[100, 10]))
# array([[ 1. , 0. , 0. , 0. ],
# [ 0.75, 0.25, 0. , 0. ],
# [ 0.7 , 0.2 , 0.1 , 0. ],
# [ 0.1 , 0.4 , 0.3 , 0.2 ]])
对于上三角矩阵,您只需从r
中减去c
,例如:
r, c = np.triu_indices_from(B.T)
B.T[r, c] = B.T[c - r, c]
答案 1 :(得分:4)
以下是2D
数组案例的一种方法 -
mask = np.tril(np.ones((4,4),dtype=bool))
out = np.zeros_like(B)
out[mask] = B[:,::-1][mask[:,::-1]]
您可以使用相同的3D
掩码将2D
数组扩展到最后两个轴的masking
,就像这样 -
out = np.zeros_like(B)
out[:,mask] = B[:,:,::-1][:,mask[:,::-1]]
..类似于4D
数组的情况,如此 -
out = np.zeros_like(B)
out[:,:,mask] = B[:,:,:,::-1][:,:,mask[:,::-1]]
正如我们所看到的,我们将掩蔽过程保持在(4,4)
的最后两个轴上,解决方案基本保持不变。
示例运行 -
In [95]: B
Out[95]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.25, 0.75, 0. , 0. ],
[ 0.1 , 0.2 , 0.7 , 0. ],
[ 0.2 , 0.3 , 0.4 , 0.1 ]])
In [96]: mask = np.tril(np.ones((4,4),dtype=bool))
...: out = np.zeros_like(B)
...: out[mask] = B[:,::-1][mask[:,::-1]]
...:
In [97]: out
Out[97]:
array([[ 1. , 0. , 0. , 0. ],
[ 0.75, 0.25, 0. , 0. ],
[ 0.7 , 0.2 , 0.1 , 0. ],
[ 0.1 , 0.4 , 0.3 , 0.2 ]])