POS-Tagger非常慢

时间:2015-11-12 16:32:20

标签: python nlp nltk pos-tagger

我使用nltk通过首先删除给定的停用词来从句子生成n-gram。但是,nltk.pos_tag()非常慢,在我的CPU(Intel i7)上占用0.6秒。

输出:

['The first time I went, and was completely taken by the live jazz band and atmosphere, I ordered the Lobster Cobb Salad.']
0.620481014252
["It's simply the best meal in NYC."]
0.640982151031
['You cannot go wrong at the Red Eye Grill.']
0.644664049149

代码:

for sentence in source:

    nltk_ngrams = None

    if stop_words is not None:   
        start = time.time()
        sentence_pos = nltk.pos_tag(word_tokenize(sentence))
        print time.time() - start

        filtered_words = [word for (word, pos) in sentence_pos if pos not in stop_words]
    else:
        filtered_words = ngrams(sentence.split(), n)

这真的很慢还是我在这里做错了什么?

3 个答案:

答案 0 :(得分:7)

使用pos_tag_sents标记多个句子:

>>> import time
>>> from nltk.corpus import brown
>>> from nltk import pos_tag
>>> from nltk import pos_tag_sents
>>> sents = brown.sents()[:10]
>>> start = time.time(); pos_tag(sents[0]); print time.time() - start
0.934092998505
>>> start = time.time(); [pos_tag(s) for s in sents]; print time.time() - start
9.5061340332
>>> start = time.time(); pos_tag_sents(sents); print time.time() - start 
0.939551115036

答案 1 :(得分:5)

nltk pos_tag is defined as:
from nltk.tag.perceptron import PerceptronTagger
def pos_tag(tokens, tagset=None):
    tagger = PerceptronTagger()
    return _pos_tag(tokens, tagset, tagger)

因此每次调用pos_tag都会实例化感知器模块,这需要花费大量的计算时间。您可以通过直接调用tagger.tag来节省这段时间:

from nltk.tag.perceptron import PerceptronTagger
tagger=PerceptronTagger()
sentence_pos = tagger.tag(word_tokenize(sentence))

答案 2 :(得分:0)

如果您正在寻找另一种在Python中具有快速性能的POS标记器,您可能需要尝试RDRPOSTagger。例如,在英文POS标记上,使用Core 2Duo 2.4GHz的计算机,Python中的单线程实现的标记速度为8K字/秒。只需使用多线程模式即可获得更快的标记速度。与最先进的标记器相比,RDRPOSTagger获得了极具竞争力的精度,现在支持40种语言的预训练模型。请参阅this paper中的实验结果。