如何使用scikits加载datset

时间:2015-11-10 16:25:55

标签: python scikit-learn scikits

我正在研究推荐系统,我正在尝试使用scikits.crab软件包来使用推荐系统中的基本算法。 但是,在每个教程中,在示例中,他们只使用了scikits自己的数据集,而且我没有找到任何关于如何加载外部数据集的信息(例如从我的计算机中) 这是你在scikits的每个教程中看到的。蟹:

from scikits.crab import datsets
movies=datsets.load_sample_movies()
model=MatrixPreferenceDataModel(movies.data)

但是,正如我所说,我需要从我的机器加载一个可以被scikits方法使用的数据集

1 个答案:

答案 0 :(得分:3)

Here是螃蟹教程的相关部分。

在上面的示例中,您只为模型使用movies.data字段。 movies.data如下所示:

>>> print movies.data
{1: {1: 3.0, 2: 4.0, 3: 3.5, 4: 5.0, 5: 3.0},
 2: {1: 3.0, 2: 4.0, 3: 2.0, 4: 3.0, 5: 3.0, 6: 2.0},
 3: {2: 3.5, 3: 2.5, 4: 4.0, 5: 4.5, 6: 3.0},
 4: {1: 2.5, 2: 3.5, 3: 2.5, 4: 3.5, 5: 3.0, 6: 3.0},
 5: {2: 4.5, 3: 1.0, 4: 4.0},
 6: {1: 3.0, 2: 3.5, 3: 3.5, 4: 5.0, 5: 3.0, 6: 1.5},
 7: {1: 2.5, 2: 3.0, 4: 3.5, 5: 4.0}}

这只是一个字典,其中键是用户(此处由1,2,3,4,5,6和7表示),值是另一个字典,其中键是电影ID和值是评级。所以你只需要构建一个嵌套字典。

从源代码中,作者使用以下代码从.csv文件加载数据:

def load_sample_movies():

    base_dir = join(dirname(__file__), 'data/')

    #Read data
    data_m = np.loadtxt(base_dir + 'sample_movies.csv',
            delimiter=';', dtype=str)
    item_ids = []
    user_ids = []
    data_songs = {}
    for user_id, item_id, rating in data_m:
        if user_id not in user_ids:
            user_ids.append(user_id)
        if item_id not in item_ids:
            item_ids.append(item_id)
        u_ix = user_ids.index(user_id) + 1
        i_ix = item_ids.index(item_id) + 1
        data_songs.setdefault(u_ix, {})
        data_songs[u_ix][i_ix] = float(rating)

    data_t = []
    for no, item_id in enumerate(item_ids):
        data_t.append((no + 1, item_id))
    data_titles = dict(data_t)

    data_u = []
    for no, user_id in enumerate(user_ids):
        data_u.append((no + 1, user_id))
    data_users = dict(data_u)

    fdescr = open(dirname(__file__) + '/descr/sample_movies.rst')

    return Bunch(data=data_songs, item_ids=data_titles,
                 user_ids=data_users, DESCR=fdescr.read())

此数据所在的.csv文件格式为:

Jack Matthews;Lady in the Water;3.0
Jack Matthews;Snakes on a Planet;4.0
Jack Matthews;You, Me and Dupree;3.5
Jack Matthews;Superman Returns;5.0
Jack Matthews;The Night Listener;3.0
Mick LaSalle;Lady in the Water;3.0
Mick LaSalle;Snakes on a Planet;4.0
Mick LaSalle;Just My Luck;2.0
Mick LaSalle;Superman Returns;3.0
Mick LaSalle;You, Me and Dupree;2.0
Mick LaSalle;The Night Listener;3.0

因此,如果您想制作自己的数据集,则有两种选择。要么将它自己格式化为推荐者需要的字典格式,要么根据其为您格式化的导入编写一种方法。

看起来这个项目没有从csv"导入的一般信息。我能找到的方法 - 我可能只是想念它,只是浏览它。

幸运的是,由于推荐人似乎只想要字典,因此您不需要拥有额外的描述文件,只需正确格式化数据即可。