我有一个如下的数据集。
dat1 <- read.table(header=TRUE, text="
ID Pa Gu Ta
8645 Rel345 Gel294 Tel452
6228 Rel345 Gel294 Tel467
5830 Rel345 Gel294 Tel467
1844 Rel345 Gel295 Tel467
4461 Rel345 Gel295 Tel467
2119 Rel345 Gel294 Tel452
1821 Rel345 Gel294 Tel467
6851 Rel345 Gel294 Tel467
4214 Rel345 Gel294 Tel452
2589 Rel346 Gel294 Tel467
2116 Rel347 Gel294 Tel452
8523 Rel348 Gel295 Tel468
2603 Rel348 Gel295 Tel468
2801 Rel348 Gel295 Tel452
1485 Rel348 Gel295 Tel468
2116 Rel348 Gel295 Tel452
8753 Rel348 Gel295 Tel452
4277 Rel348 Gel295 Tel468
7053 Rel348 Gel295 Tel468
3320 Rel348 Gel295 Tel452
7974 Rel348 Gel295 Tel468
")
dat1
ID Pa Gu Ta
1 8645 Rel_123 Gela_134 Tel_111
2 6228 Rel_123 Gela_134 Tel_112
3 5830 Rel_123 Gela_134 Tel_112
4 1844 Rel_123 Gela_135 Tel_112
5 4461 Rel_123 Gela_135 Tel_112
6 2119 Rel_123 Gela_134 Tel_111
7 1821 Rel_123 Gela_134 Tel_112
8 6851 Rel_123 Gela_134 Tel_112
9 4214 Rel_123 Gela_134 Tel_111
10 2589 Rel_124 Gela_134 Tel_112
11 2116 Rel_125 Gela_134 Tel_111
12 8523 Rel_126 Gela_135 Tel_113
13 2603 Rel_126 Gela_135 Tel_113
14 2801 Rel_126 Gela_135 Tel_111
15 1485 Rel_126 Gela_135 Tel_113
16 2116 Rel_126 Gela_135 Tel_111
17 8753 Rel_126 Gela_135 Tel_111
18 4277 Rel_126 Gela_135 Tel_113
19 7053 Rel_126 Gela_135 Tel_113
20 3320 Rel_126 Gela_135 Tel_111
21 7974 Rel_126 Gela_135 Tel_113
右三列的属性记录如下:
dat2 <- read.table(header=TRUE, text="
Att New_Att
Rel345 Rel_123
Rel346 Rel_124
Rel347 Rel_125
Rel348 Rel_126
Gel294 Gela_134
Gel295 Gela_135
Tel452 Tel_111
Tel467 Tel_112
Tel468 Tel_113
")
dat2
Att New_Att
1 Rel345 Rel_123
2 Rel346 Rel_124
3 Rel347 Rel_125
4 Rel348 Rel_126
5 Gel294 Gela_134
6 Gel295 Gela_135
7 Tel452 Tel_111
8 Tel467 Tel_112
9 Tel468 Tel_113
使用plyr
包(使用revalue
功能),我可以进行如下更改。
library(plyr)
dat1$Pa<- revalue(dat1$Pa, c("Rel345"="Rel_123","Rel346"="Rel_124","Rel347"="Rel_125",
"Rel348"="Rel_126"))
dat1$Gu<- revalue(dat1$Gu, c("Gel294"="Gela_134","Gel295"="Gela_135"))
dat1$Ta<- revalue(dat1$Ta, c("Tel452"="Tel_111","Tel467"="Tel_112","Tel468"="Tel_113" ))
dat1
ID Pa Gu Ta
1 8645 Rel_123 Gela_134 Tel_111
2 6228 Rel_123 Gela_134 Tel_112
3 5830 Rel_123 Gela_134 Tel_112
4 1844 Rel_123 Gela_135 Tel_112
5 4461 Rel_123 Gela_135 Tel_112
6 2119 Rel_123 Gela_134 Tel_111
7 1821 Rel_123 Gela_134 Tel_112
8 6851 Rel_123 Gela_134 Tel_112
9 4214 Rel_123 Gela_134 Tel_111
10 2589 Rel_124 Gela_134 Tel_112
11 2116 Rel_125 Gela_134 Tel_111
12 8523 Rel_126 Gela_135 Tel_113
13 2603 Rel_126 Gela_135 Tel_113
14 2801 Rel_126 Gela_135 Tel_111
15 1485 Rel_126 Gela_135 Tel_113
16 2116 Rel_126 Gela_135 Tel_111
17 8753 Rel_126 Gela_135 Tel_111
18 4277 Rel_126 Gela_135 Tel_113
19 7053 Rel_126 Gela_135 Tel_113
20 3320 Rel_126 Gela_135 Tel_111
21 7974 Rel_126 Gela_135 Tel_113
我有一个包含100万行的数据集,其中一些变量有200多个类别。所以我上面的代码不方便。我想通过阅读attribute name
中的重新编码来更改dat2
。
答案 0 :(得分:1)
我们遍历&lt; dat1&#39;的列。除了&#39; ID&#39;专栏,match
&#39; Att&#39;来自&#39; df2&#39;,使用数字索引将列元素替换为&#39; New_Att&#39;
dat1[-1] <- lapply(dat1[-1], function(x) dat2$New_Att[match(x, dat2$Att)])
或者我们可以像以前一样将数据集转换为矩阵和match
。
`dim<-`(dat2[,2][match(as.matrix(dat1[-1]), dat2[,1])], dim(dat1[-1]))