我正在寻找更快的方式来计算这类事情。 (真正的数据库有109 964 694行)。
DT<-data.table(id=c(1,2,1,4,2,1,7,8,8,10),
effect=c("A","A","B","B","B","C","C","C","A","D"),
value=1)
我想要effect =="A"
和effect == "C"
intersect(DT[effect=="A",(id)], DT[effect=="C",(id)])
还有其他更快的方法吗?
我还想将effect =="A"
和effect =="C"
的ID设为..而不是effect=="B"
setdiff(
intersect(DT[effect=="A",(id)],DT[effect=="C",(id)]),
DT[effect=="B",(id)]
)
任何更好(更快)的想法?
此致
PS:我尝试过这种事情:DT[,effect=="diag_998" | effect=="diag_1900",by=id][,sum(V1)==2,by=id][V1==TRUE,(id)]
但它非常非常慢......
编辑:感谢你的提议。
似乎没有什么比V1和A1更快:
system.time(V1<-intersect(DT[effect=="A",(id)],DT[effect=="C",(id)]))# 0.014 sec
system.time(V2<-DT[effect=="A" | effect=="C", unique(id[duplicated(id)])]) #17sec
system.time(V3<-DT[,list(cond=all(c("A","C") %in% effect)),by=id][cond==TRUE,id] ) #more than 1 min
system.time(V4<-DT[effect=="A" | effect=="C", .N[.N > 1], by = id]$id) # 17 sec
system.time(V5<-DT[, .GRP[sum(c("A", "C") %chin% effect)==2], id]$id) # 103 sec
system.time(V6<-DT[, .GRP[sum(c("A", "C") %in% effect)==2], id]$id)#more than 1 min
setkey(DT, effect)
system.time(V7<-DT[.(c("A", "C")), if (.N > 1) TRUE, by = id]$id)#0.19 sec
system.time(A1<-setdiff(intersect(DT[effect=="A",(id)],DT[effect=="C",(id)]),DT[effect=="D",(id)])) # 0.014 sec
system.time(A2<-DT[,list(cond=all(c("A","C") %in% effect) & (!"D" %in% effect)),by=id][cond==TRUE,id])#more than 1 min
system.time(A3<-DT[,list(cond=all(c("A","C") %chin% effect) & (!"D" %chin% effect)),by=id][cond==TRUE,id])
system.time(A4<-DT[.(c("A", "C", "D")), if (.N == 2 & !("D" %in% effect)) TRUE, by = id]$id)# 1sec
编辑:另一个基准,感谢@MichaelChirico
microbenchmark(times=50L,
+ bakal=intersect(DT[effect=="A", id], DT[effect=="C", id]),
+ bakal.keyed=intersect(DT["A", id], DT["C", id]),
+ rscr1=DT[effect %in% c("A","C"), unique(id[duplicated(id)])],
+ rscr1.keyed=DT[.(c("A","C")), unique(id[duplicated(id)])])
Unit: milliseconds
expr min lq mean median uq max neval
bakal 10.963171 11.003494 11.072844 11.019909 11.060331 12.641751 50
bakal.keyed 10.738537 10.794715 10.878960 10.838630 10.892020 12.416713 50
rscr1 9.504886 9.572026 9.662024 9.598426 9.645478 11.127047 50
rscr1.keyed 9.013076 9.037370 9.065215 9.065669 9.083492 9.206366 50
答案 0 :(得分:2)
看来你走的是正确的道路;我只能建议加快速度。
这是一个小型的样本数据集,用于清除最糟糕的尝试:
set.seed(10239)
NN<-1e6
DT<-data.table(id=sample(8e5,NN,T),
effect=sample(LETTERS[1:4],NN,T),
val=rnorm(NN),key="effect")
我最初的建议是使用键控,但不是最好的方式,基本上是:setkey(DT,effect); DT[.(c("A", "C")), if (.N > 1) TRUE, by = id]$id
。
以下是此方法的基准,您的原始方法以及评论中提到的其他方法(我进行了一些优化,例如在@ nicola的方法中用cond==TRUE
替换(cond)
@ RichardScriven的effect=="A"|effect=="C"
effect %in% c("A", C")
:
library(microbenchmark)
microbenchmark(times=50L,
bakal=intersect(DT[effect=="A", id], DT[effect=="C", id]),
rscr1=DT[effect %in% c("A","C"), unique(id[duplicated(id)])],
nicol=DT[,.(cond=all(c("A","C") %in% effect)), by=id][(cond), id],
rscr2=DT[effect %in% c("A","C"), .N[.N > 1], by = id]$id,
akrun=DT[, .GRP[sum(c("A", "C") %chin% effect) == 2], id]$id,
mikec=DT[.(c("A", "C")), if (.N > 1) TRUE, by = id]$id)
我的机器上有结果:
Unit: milliseconds
expr min lq mean median uq max neval cld
bakal 14.82926 15.18540 17.86200 15.56453 16.70924 64.99443 50 a
rscr1 13.41102 13.98252 20.11127 14.93054 18.02248 66.14476 50 a
nicol 1329.82013 1377.03884 1436.45650 1404.48956 1483.47944 1758.00831 50 e
rscr2 260.54888 269.86605 294.05219 276.66802 310.76356 479.50419 50 c
akrun 997.43300 1075.17322 1103.06220 1095.08246 1118.16848 1360.80793 50 d
mikec 154.39418 158.90884 180.01096 163.32763 206.59246 235.45523 50 b
让我们看看这些在你提到的data.table
上的表现如何:
set.seed(12039)
NN<-1e8
DT<-data.table(id=sample(8e5,NN,T),
effect=sample(LETTERS[1:4],NN,T),
val=rnorm(NN),key="effect")
microbenchmark(times=50L,
bakal=intersect(DT[effect=="A", id], DT[effect=="C", id]),
bakal.keyed=intersect(DT["A", id], DT["C", id]),
rscr1=DT[effect %in% c("A","C"), unique(id[duplicated(id)])],
rscr1.keyed=DT[.(c("A","C")), unique(id[duplicated(id)])])
Unit: seconds
expr min lq mean median uq max neval cld
bakal 3.772309 3.991414 4.395669 4.408319 4.681609 5.170224 50 a
bakal.keyed 3.708500 3.807447 4.289518 4.384870 4.653427 5.085429 50 a
rscr1 4.962940 5.210845 5.721636 5.707369 6.162103 6.779900 50 b
rscr1.keyed 4.904702 5.117411 5.727848 5.807186 6.194990 6.975508 50 b