所以我有2个词典列表..
list_yearly = [
{'name':'john',
'total_year': 107
},
{'name':'cathy',
'total_year':124
},
]
list_monthly = [
{'name':'john',
'month':'Jan',
'total_month': 34
},
{'name':'cathy',
'month':'Jan',
'total_month':78
},
{'name':'john',
'month':'Feb',
'total_month': 73
},
{'name':'cathy',
'month':'Feb',
'total_month':46
},
]
目标是获得一个如下所示的最终数据集:
{'name':'john',
'total_year': 107,
'trend':[{'month':'Jan', 'total_month': 34},{'month':'Feb', 'total_month': 73}]
},
{'name':'cathy',
'total_year':124,
'trend':[{'month':'Jan', 'total_month': 78},{'month':'Feb', 'total_month': 46}]
},
由于我的数据集适用于特定年份的所有12个月的大量学生,我使用Pandas进行数据调整。这就是我的用法:
首先使用名称键将这两个列表合并到一个数据框中。
In [5]: df = pd.DataFrame(list_yearly).merge(pd.DataFrame(list_monthly))
In [6]: df
Out[6]:
name total_year month total_month
0 john 107 Jan 34
1 john 107 Feb 73
2 cathy 124 Jan 78
3 cathy 124 Feb 46
然后创建趋势列作为词典
ln [7]: df['trend'] = df.apply(lambda x: [x[['month', 'total_month']].to_dict()], axis=1)
In [8]: df
Out[8]:
name total_year month total_month \
0 john 107 Jan 34
1 john 107 Feb 73
2 cathy 124 Jan 78
3 cathy 124 Feb 46
trend
0 [{u'total_month': 34, u'month': u'Jan'}]
1 [{u'total_month': 73, u'month': u'Feb'}]
2 [{u'total_month': 78, u'month': u'Jan'}]
3 [{u'total_month': 46, u'month': u'Feb'}]
并且,使用所选列的to_dict(orient='records')
方法将其转换回dicts列表:
In [9]: df[['name', 'total_year', 'trend']].to_dict(orient='records')
Out[9]:
[{'name': 'john',
'total_year': 107,
'trend': [{'month': 'Jan', 'total_month': 34}]},
{'name': 'john',
'total_year': 107,
'trend': [{'month': 'Feb', 'total_month': 73}]},
{'name': 'cathy',
'total_year': 124,
'trend': [{'month': 'Jan', 'total_month': 78}]},
{'name': 'cathy',
'total_year': 124,
'trend': [{'month': 'Feb', 'total_month': 46}]}]
很明显,最终的数据集并不完全是我想要的。相对于两个月中的两个词,而不是所有月份的4个词组。我怎么能解决这个问题?我宁愿在Pandas本身内修复它,而不是使用这个最终输出再次将其降低到所需的状态
答案 0 :(得分:1)
您实际上应该使用groupby
根据name
和total_year
而不是apply
进行分组(作为第二步),然后在groupby中创建您想要的列表。示例 -
df = pd.DataFrame(list_yearly).merge(pd.DataFrame(list_monthly))
def func(group):
result = []
for idx, row in group.iterrows():
result.append({'month':row['month'],'total_month':row['total_month']})
return result
result = df.groupby(['name','total_year']).apply(func).reset_index()
result.columns = ['name','total_year','trend']
result_dict = result.to_dict(orient='records')
演示 -
In [9]: df = pd.DataFrame(list_yearly).merge(pd.DataFrame(list_monthly))
In [10]: df
Out[10]:
name total_year month total_month
0 john 107 Jan 34
1 john 107 Feb 73
2 cathy 124 Jan 78
3 cathy 124 Feb 46
In [13]: def func(group):
....: result = []
....: for idx, row in group.iterrows():
....: result.append({'month':row['month'],'total_month':row['total_month']})
....: return result
....:
In [14]:
In [14]: result = df.groupby(['name','total_year']).apply(func).reset_index()
In [15]: result
Out[15]:
name total_year 0
0 cathy 124 [{'month': 'Jan', 'total_month': 78}, {'month'...
1 john 107 [{'month': 'Jan', 'total_month': 34}, {'month'...
In [19]: result.columns = ['name','total_year','trend']
In [20]: result
Out[20]:
name total_year trend
0 cathy 124 [{'month': 'Jan', 'total_month': 78}, {'month'...
1 john 107 [{'month': 'Jan', 'total_month': 34}, {'month'...
In [21]: result.to_dict(orient='records')
Out[21]:
[{'name': 'cathy',
'total_year': 124,
'trend': [{'month': 'Jan', 'total_month': 78},
{'month': 'Feb', 'total_month': 46}]},
{'name': 'john',
'total_year': 107,
'trend': [{'month': 'Jan', 'total_month': 34},
{'month': 'Feb', 'total_month': 73}]}]
答案 1 :(得分:1)
在熊猫中,尝试:
df1 = pd.DataFrame(list_yearly)
df2 = pd.DataFrame(list_monthly)
df = df1.set_index('name').join(pd.DataFrame(df2.groupby('name').apply(\
lambda gp: gp.transpose().to_dict().values())))
更新:从dicts中删除名称并转换为dicts列表:
df1 = pd.DataFrame(list_yearly)
df2 = pd.DataFrame(list_monthly)
keep_columns = [c for c in df2.columns if not c == 'name']
# within pandas
df = df1.set_index('name').join(pd.DataFrame(df2.groupby('name').apply(\
lambda gp: gp[keep_columns].transpose().to_dict().values()))) \
.reset_index()
data = [row.to_dict() for _, row in df.iterrows()]
仍需要重命名' 0'趋势'。