我是Matlab和Machine Learning的新手,我试图在不使用矩阵的情况下制作梯度下降函数。
函数gradientDescentMulti有5个参数:
我已经有了使用矩阵乘法的解决方案
function theta = gradientDescentMulti(X, y, theta, alpha, num_iters)
for iter = 1:num_iters
gradJ = 1/m * (X'*X*theta - X'*y);
theta = theta - alpha * gradJ;
end
end
迭代后的结果:
theta =
1.0e+05 *
3.3430
1.0009
0.0367
但是现在,我尝试在没有矩阵乘法的情况下做同样的事情,这是函数:
function theta = gradientDescentMulti(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
n = size(X, 2); % number of features
for iter = 1:num_iters
new_theta = zeros(1, n);
%// for each feature, found the new theta
for t = 1:n
S = 0;
for example = 1:m
h = 0;
for example_feature = 1:n
h = h + (theta(example_feature) * X(example, example_feature));
end
S = S + ((h - y(example)) * X(example, n)); %// Sum each feature for this example
end
new_theta(t) = theta(t) - alpha * (1/m) * S; %// Calculate new theta for this example
end
%// only at the end of the function, update all theta simultaneously
theta = new_theta'; %// Transpose new_theta (horizontal vector) to theta (vertical vector)
end
end
结果,所有theta都是相同的:/
theta =
1.0e+04 *
3.5374
3.5374
3.5374
答案 0 :(得分:1)
如果你看一下梯度更新规则,首先实际计算所有训练样例的假设可能更有效,然后用每个训练样例的基础真值减去它,并将它们存储到数组或向量中。完成此操作后,您可以非常轻松地计算更新规则。对我而言,您的代码中似乎没有这样做。
因此,我重写了代码,但是我有一个单独的数组,用于存储每个训练示例和基础事实值的假设的差异。执行此操作后,我将分别为每个功能计算更新规则:
for iter = 1 : num_iters
%// Compute hypothesis differences with ground truth first
h = zeros(1, m);
for t = 1 : m
%// Compute hypothesis
for tt = 1 : n
h(t) = h(t) + theta(tt)*X(t,tt);
end
%// Compute difference between hypothesis and ground truth
h(t) = h(t) - y(t);
end
%// Now update parameters
new_theta = zeros(1, n);
%// for each feature, find the new theta
for tt = 1 : n
S = 0;
%// For each sample, compute products of hypothesis difference
%// and the right feature of the sample and accumulate
for t = 1 : m
S = S + h(t)*X(t,tt);
end
%// Compute gradient descent step
new_theta(tt) = theta(tt) - (alpha/m)*S;
end
theta = new_theta'; %// Transpose new_theta (horizontal vector) to theta (vertical vector)
end
当我这样做时,我得到与使用矩阵公式相同的答案。