我正在尝试在R中引导一个简单的多项式回归,我收到一个错误:
is.data.frame(data)中的错误:object' d'找不到
真正奇怪的是,我使用与引导程序包at Quick-R的教程中相同的代码(已针对此特定问题进行了调整),并且当我使用不同的函数(例如lm)时,相同的代码也起作用())。当然,我做了一些愚蠢的事情,但我看不出是什么。如果有人可以提供帮助,我会非常感激。
这是一个例子:
require(foreign)
require(nnet)
require(boot)
# an example for multinomial logistic regression
ml = read.dta('http://www.ats.ucla.edu/stat/data/hsbdemo.dta')
ml = ml[,c(5,7,3)]
bs <- function(formula, data, indices) {
d = data[indices,] # allows boot to select sample
fit = multinom(formula, data=d)
s = summary(fit)
return(list(fit$coefficients, fit$standard.errors))
}
# 5 replications
results = list()
results <- boot(
data=ml, statistic=bs, R=5, parallel='multicore',
formula=prog~write
)
答案 0 :(得分:0)
错误发生在summary()
部分,multinom()
返回的对象也没有coefficients
和standard.errors
。似乎summary.multinom()
反过来从您的数据d
计算出粗麻布,由于某种原因(可能是一个范围问题)无法找到。快速解决方法是添加Hess = TRUE
:
bs <- function(formula, data, indices) {
d = data[indices,] # allows boot to select sample
fit = multinom(formula, data=d, Hess = TRUE)
s = summary(fit)
return( cbind(s$coefficients, s$standard.errors) )
}
# 5 replications
results = list()
results <- boot(
data=ml, statistic=bs, R=5, parallel='multicore',
formula=prog~write
)
答案 1 :(得分:0)
多项逻辑回归使用coef()
函数返回系数矩阵。这与返回系数向量的lm
或glm
模型不同。
library(foreign) # read.dta()
library(nnet) # multinom()
require(boot) # boot()
# an example for multinomial logistic regression
ml = read.dta('http://www.ats.ucla.edu/stat/data/hsbdemo.dta')
ml = ml[,c(5,7,3)]
names(ml)
bs <- function(formula, data, indices) {
d = data[indices,] # allows boot to select sample
fit = multinom(formula, data=d, maxit=1000, trace=FALSE)
#s = summary(fit)
#return(list(fit$coefficients, fit$standard.errors))
estimates <- coef(fit)
return(t(estimates))
}
# enable parallel
library(parallel)
cl <- makeCluster(2)
clusterExport(cl, "multinom")
# 10000 replications
set.seed(1984)
results <- boot(
data=ml, statistic=bs, R=10000, parallel = "snow", ncpus=2, cl=cl,
formula=prog~write
)
# label the estimates
subModelNames <- colnames(results$t0)
varNames <- rownames(results$t0)
results$t0
estNames <- apply(expand.grid(varNames,subModelNames),1,function(x) paste(x,collapse="_"))
estNames
colnames(results$t) <- estNames
# summary of results
library(car)
summary(results)
confint(results, level=0.95, type="norm")
confint(results, level=0.95, type="perc")
confint(results, level=0.95, type="bca")
# plot the results
hist(results, legend="separate")