我使用IPython Notebook和Matplotlib以内联显示模式可视化一些数据(即我想在IPython Notebook的Web界面上显示和交互我的图表)。
我有一个显示几个不同图表的图表,我希望有一个交互式界面(例如一组复选框),允许我隐藏或显示图表。
我的情节如下:
我的另一个词:我有一个情节,我在其中显示许多不同的图形,每个图形是一条线,它有自己的图例。我想在绘图中添加一组复选框,每个复选框都用于图表。选中检查点后,图形将可见,未选中时图形将消失。
答案 0 :(得分:1)
要执行此操作,您需要参考由绘图例程创建的艺术家。附加到DataFrame对象的绘图方法返回它们绘制的Axes
对象(这对于简单的事情很有用,但是使复杂的事情变得不可能)所以,有些绘图代码:
%matplotlib notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
def pandas_plot(ax, df, style_cycle, **kwargs):
"""
Plot a pandas DataFrame
Parameters
----------
ax : matplotlib.axes.Axes
The axes to plot to
df : pd.DataFrame
The data to plot
style_cycle : Cycler
Something that when iterated over yields style dict
Returns
-------
ret : dict
Dictionary of line2d artists added
"""
ret = {}
x = df.index
for n, sty in zip(df.columns, style_cycle):
sty.update(kwargs)
ln, = ax.plot(x, df[n], label=n, **sty)
ret[n] = ln
ax.legend()
return ret
现在有一些代码来设置小部件界面(这比你要求的要多,但这是我从我的scipy谈话中预先做出来的):
from IPython.html.widgets import *
from IPython.display import display
def widget_function_factory(arts):
"""
Generate fulnction + args to pass to interactive
Parameters
----------
arts : dict
dictionary of Line2D
"""
name = Dropdown(options=list(arts.keys()))
def set_all(_, old_line, new_line):
ln = arts[new_line]
lw.value = ln.get_lw()
alph.value = ln.get_alpha() or 1
visible.value = ln.get_visible()
markevery.value = ln.get_markevery()
marker.value = ln.get_marker()
def set_lw(_, old_lw, new_lw):
ln = arts[name.value]
arts[name.value].set_lw(new_lw)
arts[name.value].axes.legend()
def set_alpha(_, old_value, new_value):
ln = arts[name.value]
ln.set_alpha(new_value)
ln.axes.legend()
def set_visible(_, old_value, new_value):
ln = arts[name.value]
ln.set_visible(new_value)
ln.axes.legend()
def set_markevery(_, old_value, new_value):
ln = arts[name.value]
ln.set_markevery(new_value)
def set_marker(_, old_value, new_value):
ln = arts[name.value]
ln.set_marker(new_value)
ln.axes.legend()
lw = FloatSlider(min=1, max=5, description='lw: ')
alph = FloatSlider(min=0, max=1, description='alpha: ')
visible = Checkbox(description='visible: ')
markevery = IntSlider(min=1, max=15, description='markevery: ')
marker = Dropdown(options={v:k for k, v in matplotlib.markers.MarkerStyle.markers.items()},
description='marker: ')
name.on_trait_change(set_all, 'value')
lw.on_trait_change(set_lw, 'value')
alph.on_trait_change(set_alpha, 'value')
visible.on_trait_change(set_visible, 'value')
markevery.on_trait_change(set_markevery, 'value')
marker.on_trait_change(set_marker, 'value')
display(name, lw, alph, marker, markevery, visible)
set_all(None, None, name.value)
进行绘图:
th = np.linspace(0, 2*np.pi, 128)
df = pd.DataFrame({'sin': np.sin(th),
'shift +': np.sin(th + np.pi / 3),
'shift -': np.sin(th - np.pi / 3)}, index=th)
fig, ax = plt.subplots()
from cycler import cycler
style_cycle = cycler('color',['r', 'black', 'pink']) + cycler('marker', 'sxo')
#style_cycle = [{'color': 'r', 'marker': 's'},
# {'color': 'black', 'marker': 'x'},
# {'color': 'pink', 'marker': 'o'}]
arts = pandas_plot(ax, df, style_cycle, markevery=10)
vlns = []
for x in np.arange(1, 7) * np.pi/3:
vlns.append(plt.axvline(x, color='k', linestyle=':'))
plt.axhline(0, color='k', linestyle=':')
并创建控件
widget_function_factory(arts)
cycler
是一个从mpl分离出来的副项目(并且将成为1.5的必需项目)。它目前可以安装pip。
请参阅https://gist.github.com/tacaswell/7a0e5e76fb3cafa3b7cd#file-so_interactive_demo-ipynb了解演示笔记本。
正在进行的工作使这更容易(因此mpl艺术家可以自动构建他们的UI元素)。实现这项工作的基础设施是mpl 2.1的主要目标之一。