我想就如何为Gene ontology (.obo)
解析此文件提供一些帮助/建议我正在努力在D3中创建一个可视化,并且需要以JSON格式创建一个“树”文件 -
{
"name": "flare",
"description": "flare",
"children": [
{
"name": "analytic",
"description": "analytics",
"children": [
{
"name": "cluster",
"description": "cluster",
"children": [
{"name": "Agglomer", "description": "AgglomerativeCluster", "size": 3938},
{"name": "Communit", "description": "CommunityStructure", "size": 3812},
{"name": "Hierarch", "description": "HierarchicalCluster", "size": 6714},
{"name": "MergeEdg", "description": "MergeEdge", "size": 743}
]
}, etc..
这种格式似乎很容易在python的字典中复制,每个条目有3个字段:name,description和children []。
我的问题实际上是如何提取数据。上面链接的文件的“对象”结构为:
[Term]
id: GO:0000001
name: mitochondrion inheritance
namespace: biological_process
def: "The distribution of mitochondria, including the mitochondrial genome, into daughter cells after mitosis or meiosis, mediated by interactions between mitochondria and the cytoskeleton." [GOC:mcc, PMID:10873824, PMID:11389764]
synonym: "mitochondrial inheritance" EXACT []
is_a: GO:0048308 ! organelle inheritance
is_a: GO:0048311 ! mitochondrion distribution
我需要id,is_a和name字段。我已经尝试使用python来解析它,但我似乎找不到找到每个对象的方法。
有什么想法吗?
答案 0 :(得分:2)
这是一种解析“.obo”中对象的相当简单的方法。文件。它将对象数据保存到dict
,其中id
为关键字,name
和is_a
数据保存在列表中。然后使用标准的json
模块.dumps
函数对其进行漂亮打印。
出于测试目的,我在您的链接中使用了截断版本的文件,该文件最多只包含id: GO:0000006
。
此代码忽略包含is_obsolete
字段的所有对象。它还会从is_a
字段中删除描述信息;我想你可能想要这个,但它很容易禁用这个功能。
#!/usr/bin/env python
''' Parse object data from a .obo file
From http://stackoverflow.com/q/32989776/4014959
Written by PM 2Ring 2015.10.07
'''
from __future__ import print_function, division
import json
from collections import defaultdict
fname = "go-basic.obo"
term_head = "[Term]"
#Keep the desired object data here
all_objects = {}
def add_object(d):
#print(json.dumps(d, indent = 4) + '\n')
#Ignore obsolete objects
if "is_obsolete" in d:
return
#Gather desired data into a single list,
# and store it in the main all_objects dict
key = d["id"][0]
is_a = d["is_a"]
#Remove the next line if you want to keep the is_a description info
is_a = [s.partition(' ! ')[0] for s in is_a]
all_objects[key] = d["name"] + is_a
#A temporary dict to hold object data
current = defaultdict(list)
with open(fname) as f:
#Skip header data
for line in f:
if line.rstrip() == term_head:
break
for line in f:
line = line.rstrip()
if not line:
#ignore blank lines
continue
if line == term_head:
#end of term
add_object(current)
current = defaultdict(list)
else:
#accumulate object data into current
key, _, val = line.partition(": ")
current[key].append(val)
if current:
add_object(current)
print("\nall_objects =")
print(json.dumps(all_objects, indent = 4, sort_keys=True))
输出
all_objects =
{
"GO:0000001": [
"mitochondrion inheritance",
"GO:0048308",
"GO:0048311"
],
"GO:0000002": [
"mitochondrial genome maintenance",
"GO:0007005"
],
"GO:0000003": [
"reproduction",
"GO:0008150"
],
"GO:0000006": [
"high-affinity zinc uptake transmembrane transporter activity",
"GO:0005385"
]
}