在Python中,Pandas正在错误地加载CSV文件(Python for Data Analysis书籍示例)

时间:2015-10-01 09:29:15

标签: python csv pandas

我正在关注Python for Data Analysis一书。它告诉我从http://www.fec.gov/disclosurep/PDownload.do获取ALL文件并用pandas加载它:

import pandas as pd

fec = pd.read_csv('P00000001-ALL.csv')

但自书写完以来,实际文件已经发生了变化。旧文件(可在此处https://github.com/pydata/pydata-book/blob/master/ch09/P00000001-ALL.csv)加载得很好

fec = pd.read_csv('../pydata-book/ch09/P00000001-ALL.csv')

但是新的加载错误,因为列似乎已经移位(第一列值被删除)

cmte_id                           P60008059
cand_id                           Bush, Jeb
cand_nm              EASTON, AMY KELLY MRS.
contbr_nm                      KEY BISCAYNE
contbr_city                              FL
contbr_st                         331491716
contbr_zip                        HOMEMAKER
contbr_employer                   HOMEMAKER
contbr_occupation                      2700
contb_receipt_amt                 26-JUN-15
contb_receipt_dt                        NaN
receipt_desc                            NaN
memo_cd                                 NaN
memo_text                             SA17A
form_tp                             1024106
file_num                        SA17.114991
tran_id                               P2016
election_tp                             NaN

实际行是

C00579458,"P60008059","Bush, Jeb","EASTON, AMY KELLY MRS.","KEY BISCAYNE","FL","331491716","HOMEMAKER","HOMEMAKER",2700,26-JUN-15,"","","","SA17A","1024106","SA17.114991","P2016",

因此C00579458在某个地方丢失了。

标题看起来像这样。     cmte_id,cand_id,cand_nm,contbr_nm,contbr_city,contbr_st,contbr_zip,contbr_employer,contbr_occupation,contb_receipt_amt,contb_receipt_dt,receipt_desc,memo_cd,memo_text,form_tp,file_num,tran_id,election_tp

2 个答案:

答案 0 :(得分:1)

原始数据中每行末尾有一个额外的逗号。

C00458844,"P60006723","Rubio, Marco","HEFFERNAN, MICHAEL","APO","AE","090960009","INFORMATION REQUESTED PER BEST EFFORTS","INFORMATION REQUESTED PER BEST EFFORTS",210,27-JUN-15,"","","","SA17A","1015697","SA17.796904","P2016",

如果您有2个逗号,则每行将移动2列。

答案 1 :(得分:1)

正如另一个答案已经建议的那样,你在行的末尾有一个comma的csv格式错误。因此,这会导致pandas将第一列视为索引列。

要解决此问题,您可以将index_col=False参数传递给pandas.read_csv()函数。示例 -

In [24]: s = io.StringIO("""cmte_id,cand_id,cand_nm,contbr_nm,contbr_city,contbr_st,contbr_zip,contbr_employer,contbr_occupation,contb_receipt_amt,contb_receipt_dt,receipt_desc,memo_cd,memo_text,form_tp,file_num,tran_id,election_tp
   ....: C00579458,"P60008059","Bush, Jeb","EASTON, AMY KELLY MRS.","KEY BISCAYNE","FL","331491716","HOMEMAKER","HOMEMAKER",2700,26-JUN-15,"","","","SA17A","1024106","SA17.114991","P2016",""")

In [25]: df = pd.read_csv(s)  #Issue

In [26]: df
Out[26]:
             cmte_id    cand_id                 cand_nm     contbr_nm  \
C00579458  P60008059  Bush, Jeb  EASTON, AMY KELLY MRS.  KEY BISCAYNE

          contbr_city  contbr_st contbr_zip contbr_employer  \
C00579458          FL  331491716  HOMEMAKER       HOMEMAKER

           contbr_occupation contb_receipt_amt  contb_receipt_dt  \
C00579458               2700         26-JUN-15               NaN

           receipt_desc  memo_cd memo_text  form_tp     file_num tran_id  \
C00579458           NaN      NaN     SA17A  1024106  SA17.114991   P2016

           election_tp
C00579458          NaN

In [29]: df = pd.read_csv(s,index_col=False)  #No issue

In [30]: df
Out[30]:
     cmte_id    cand_id    cand_nm               contbr_nm   contbr_city  \
0  C00579458  P60008059  Bush, Jeb  EASTON, AMY KELLY MRS.  KEY BISCAYNE

  contbr_st  contbr_zip contbr_employer contbr_occupation  contb_receipt_amt  \
0        FL   331491716       HOMEMAKER         HOMEMAKER               2700

  contb_receipt_dt  receipt_desc  memo_cd  memo_text form_tp  file_num  \
0        26-JUN-15           NaN      NaN        NaN   SA17A   1024106

       tran_id election_tp
0  SA17.114991       P2016

the documentations -

中正确解释了这一点
  

index_col:int或sequence或False,默认无

     

要用作DataFrame的行标签的列。如果给出序列,则使用MultiIndex。 如果在每行末尾有一个带有分隔符的格式错误的文件,您可能会考虑使用index_col = False来强制pandas 而不是使用第一列作为索引(行名称)

(强调我的)