只有在某个条件符合n
次连续的情况下,我才会更改某些DataFrame值的值。
示例:
df = pd.DataFrame(np.random.randn(15, 3))
df.iloc[4:8,0]=40
df.iloc[12,0]=-40
df.iloc[10:12,1]=-40
这给了我这个DF:
0 1 2
0 1.238892 0.802318 -0.013856
1 -1.136326 -0.527263 -0.260975
2 1.118771 0.031517 0.527350
3 1.629482 -0.158941 -1.045209
4 40.000000 0.598657 -1.268399
5 40.000000 0.442297 -0.016363
6 40.000000 -0.316817 1.744822
7 40.000000 0.193083 0.914172
8 0.322756 -0.680682 0.888702
9 -1.204531 -0.240042 1.416020
10 -1.337494 -40.000000 -1.195780
11 -0.703669 -40.000000 0.657519
12 -40.000000 -0.288235 -0.840145
13 -1.084869 -0.298030 -1.592004
14 -0.617568 -1.046210 -0.531523
现在,如果我这样做
a=df.copy()
a[ abs(a) > abs(a.std()) ] = float('nan')
我得到了
0 1 2
0 1.238892 0.802318 -0.013856
1 -1.136326 -0.527263 -0.260975
2 1.118771 0.031517 0.527350
3 1.629482 -0.158941 NaN
4 NaN 0.598657 NaN
5 NaN 0.442297 -0.016363
6 NaN -0.316817 NaN
7 NaN 0.193083 0.914172
8 0.322756 -0.680682 0.888702
9 -1.204531 -0.240042 NaN
10 -1.337494 NaN NaN
11 -0.703669 NaN 0.657519
12 NaN -0.288235 -0.840145
13 -1.084869 -0.298030 NaN
14 -0.617568 -1.046210 -0.531523
这是公平的。但是,如果这些条件最多连续2个条目满足,那么我只想用NaN
替换值(所以我可以稍后插值)。例如,我希望结果是
0 1 2
0 1.238892 0.802318 -0.013856
1 -1.136326 -0.527263 -0.260975
2 1.118771 0.031517 0.527350
3 1.629482 -0.158941 NaN
4 40.000000 0.598657 NaN
5 40.000000 0.442297 -0.016363
6 40.000000 -0.316817 NaN
7 40.000000 0.193083 0.914172
8 0.322756 -0.680682 0.888702
9 -1.204531 -0.240042 NaN
10 -1.337494 NaN NaN
11 -0.703669 NaN 0.657519
12 NaN -0.288235 -0.840145
13 -1.084869 -0.298030 NaN
14 -0.617568 -1.046210 -0.531523
显然没有现成的方法来做到这一点。我发现最接近我的问题的解决方案是this one,但我不能让它对我起作用。
有什么想法吗?
答案 0 :(得分:3)
见下文 - 棘手的部分是(cond[c] != cond[c].shift(1)).cumsum()
,它将数据分解为相同值的连续运行。
In [23]: cond = abs(df) > abs(df.std())
In [24]: for c in df.columns:
...: grouper = (cond[c] != cond[c].shift(1)).cumsum() * cond[c]
...: fill = (df.groupby(grouper)[c].transform('size') <= 2)
...: df.loc[fill, c] = np.nan
In [25]: df
Out[25]:
0 1 2
0 1.238892 0.802318 -0.013856
1 -1.136326 -0.527263 -0.260975
2 1.118771 0.031517 0.527350
3 1.629482 -0.158941 NaN
4 40.000000 0.598657 NaN
5 40.000000 0.442297 -0.016363
6 40.000000 -0.316817 NaN
7 40.000000 0.193083 0.914172
8 0.322756 -0.680682 0.888702
9 -1.204531 -0.240042 NaN
10 -1.337494 NaN NaN
11 -0.703669 NaN 0.657519
12 NaN -0.288235 -0.840145
13 -1.084869 -0.298030 NaN
14 -0.617568 -1.046210 -0.531523
为了解释一下,cond[c]
是一个布尔系列,表明你的条件是否为真。
cond[c] != cond[c].shift(1)
将当前行的条件与下一行的条件进行比较。这具有“标记”的效果,其中一系列值以值True
开始。
.cumsum()
将bool转换为整数并获取累积总和。它可能不会立即直观,但这会“数字”连续值的组。最后,* cond[c]
将所有不符合条件的群组重新分配为0(使用False == 0
)
现在您有一组符合条件的连续数字,下一步执行groupby
计算每组中的值(transform('size')
。
最后,新的bool条件用于为缺少2个或更少值的组分配缺失值。