在Python 3.4中使用多处理时出现断言错误

时间:2015-09-14 13:43:24

标签: python parallel-processing multiprocessing

我对Python很陌生,对并行处理来说是全新的。

我一直在编写代码来分析点状图像数据(想想PALM lite)并尝试使用multiprocessing模块加速我的分析代码。

对于小型数据集,我看到了相当不错的加速,最多可达四个内核。对于大型数据集,我开始得到AssertionError。我试图制作一个产生相同错误的简化示例,见下文:

import numpy as np
import multiprocessing as mp
import os

class TestClass(object):
    def __init__(self, data):
        super().__init__()
        self.data = data

    def top_level_function(self, nproc = 1):

        if nproc > os.cpu_count():
            nproc = os.cpu_count()

        if nproc == 1:
            sums = [self._sub_function() for i in range(10)]
        elif 1 < nproc:
            print('multiprocessing engaged with {} cores'.format(nproc))
            with mp.Pool(nproc) as p:
                sums = [p.apply_async(self._sub_function) for i in range(10)]
                sums = [pp.get() for pp in sums]

        self.sums = sums

        return sums

    def _sub_function(self):
        return self.data.sum(0)


if __name__ == "__main__":
    t = TestClass(np.zeros((126,512,512)))
    ans = t.top_level_function()
    print(len(ans))
    ans = t.top_level_function(4)
    print(len(ans))

    t = TestClass(np.zeros((126,2048,2048)))
    ans = t.top_level_function()
    print(len(ans))
    ans = t.top_level_function(4)
    print(len(ans))

输出:

10
multiprocessing engaged with 4 cores
10
10
multiprocessing engaged with 4 cores
Process SpawnPoolWorker-6:
Traceback (most recent call last):
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 254, in _bootstrap
    self.run()
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 108, in worker
    task = get()
  File "C:\Anaconda3\lib\multiprocessing\queues.py", line 355, in get
    res = self._reader.recv_bytes()
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 318, in _recv_bytes
    return self._get_more_data(ov, maxsize)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 337, in _get_more_data
    assert left > 0
AssertionError
Process SpawnPoolWorker-8:
Traceback (most recent call last):
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 254, in _bootstrap
    self.run()
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 108, in worker
    task = get()
  File "C:\Anaconda3\lib\multiprocessing\queues.py", line 355, in get
    res = self._reader.recv_bytes()
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 318, in _recv_bytes
    return self._get_more_data(ov, maxsize)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 337, in _get_more_data
    assert left > 0
AssertionError
Traceback (most recent call last):
  File "test.py", line 41, in <module>
    ans = t.top_level_function(4)
  File "test.py", line 21, in top_level_function
    sums = [pp.get() for pp in sums]
  File "test.py", line 21, in <listcomp>
    sums = [pp.get() for pp in sums]
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 599, in get
    raise self._value
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 383, in _handle_tasks
    put(task)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 206, in send
    self._send_bytes(ForkingPickler.dumps(obj))
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 280, in _send_bytes
    ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
OSError: [WinError 87] The parameter is incorrect

所以第一个例子运行正常,但后面的例子(更大的数据集)崩溃了。

我很遗憾这个错误来自哪里以及如何解决它。任何帮助将不胜感激。

1 个答案:

答案 0 :(得分:3)

当你这样做时

sums = [p.apply_async(self._sub_function) for i in range(10)]

会发生的事情是self._sub_function将被腌制10次并发送到工作进程进行处理。要挑选实例方法,必须对整个实例(包括 data属性)进行pickle。快速检查显示,{@ 1}}被腌制时需要4227858596字节,并且您发送的次数为10次,为10个不同的流程。

您在np.zeros((126,2048,2048))期间收到错误,这意味着转移到工作进程中断了,我的猜测是因为您正在达到内存限制。

您应该重新考虑您的设计,如果每个工作人员都可以解决部分问题而无需访问整个数据,那么多处理通常效果最佳。