以下F#代码为Project Euler problem #7提供了正确答案:
let isPrime num =
let upperDivisor = int32(sqrt(float num)) // Is there a better way?
let rec evaluateModulo a =
if a = 1 then
true
else
match num % a with
| 0 -> false
| _ -> evaluateModulo (a - 1)
evaluateModulo upperDivisor
let mutable accumulator = 1 // Would like to avoid mutable values.
let mutable number = 2 // ""
while (accumulator <= 10001) do
if (isPrime number) then
accumulator <- accumulator + 1
number <- number + 1
printfn "The 10001st prime number is %i." (number - 1) // Feels kludgy.
printfn ""
printfn "Hit any key to continue."
System.Console.ReadKey() |> ignore
mutable
值累加器和数字。我还想将while
循环重构为尾递归函数。有什么提示吗?答案 0 :(得分:3)
循环很好,但是尽可能地抽象出循环更为惯用。
let isPrime num =
let upperDivisor = int32(sqrt(float num))
match num with
| 0 | 1 -> false
| 2 -> true
| n -> seq { 2 .. upperDivisor } |> Seq.forall (fun x -> num % x <> 0)
let primes = Seq.initInfinite id |> Seq.filter isPrime
let nthPrime n = Seq.nth n primes
printfn "The 10001st prime number is %i." (nthPrime 10001)
printfn ""
printfn "Hit any key to continue."
System.Console.ReadKey() |> ignore
序列是你的朋友:)
答案 1 :(得分:1)
您可以参考我的F# for Project Euler Wiki:
我得到了第一个版本:
let isPrime n =
if n=1 then false
else
let m = int(sqrt (float(n)))
let mutable p = true
for i in 2..m do
if n%i =0 then p <- false
// ~~ I want to break here!
p
let rec nextPrime n =
if isPrime n then n
else nextPrime (n+1)
let problem7 =
let mutable result = nextPrime 2
for i in 2..10001 do
result <- nextPrime (result+1)
result
在这个版本中,虽然看起来更好,但是当数字不是素数时我仍然没有提前打破循环。在Seq模块中,exists和forall方法支持早期停止:
let isPrime n =
if n<=1 then false
else
let m = int(sqrt (float(n)))
{2..m} |> Seq.exists (fun i->n%i=0) |> not
// or equivalently :
// {2..m} |> Seq.forall (fun i->n%i<>0)
请注意,在此版本的isPrime中,通过检查低于2的数字,该函数最终在数学上是正确的。
或者您可以使用尾递归函数来执行while循环:
let isPrime n =
let m = int(sqrt (float(n)))
let rec loop i =
if i>m then true
else
if n%i = 0 then false
else loop (i+1)
loop 2
问题7的更多功能版本是使用Seq.unfold生成无限素数序列并获取此序列的第n个元素:
let problem7b =
let primes =
2 |> Seq.unfold (fun p ->
let next = nextPrime (p+1) in
Some( p, next ) )
Seq.nth 10000 primes
答案 2 :(得分:0)
这是我的解决方案,它使用尾递归循环模式,它总是允许你避免变量和获得中断功能:http://projecteulerfun.blogspot.com/2010/05/problem-7-what-is-10001st-prime-number.html
let problem7a =
let isPrime n =
let nsqrt = n |> float |> sqrt |> int
let rec isPrime i =
if i > nsqrt then true //break
elif n % i = 0 then false //break
//loop while neither of the above two conditions are true
//pass your state (i+1) to the next call
else isPrime (i+1)
isPrime 2
let nthPrime n =
let rec nthPrime i p count =
if count = n then p //break
//loop while above condition not met
//pass new values in for p and count, emulating state
elif i |> isPrime then nthPrime (i+2) i (count+1)
else nthPrime (i+2) p count
nthPrime 1 1 0
nthPrime 10001
现在,专门解决您在解决方案中遇到的一些问题。
上面的nthPrime函数允许你在任意位置找到素数,这就是它看起来如何适应你的方法找到特定的1001素数,并使用你的变量名称(解决方案是尾递归而不是使用mutables):
let prime1001 =
let rec nthPrime i number accumulator =
if accumulator = 1001 then number
//i is prime, so number becomes i in our next call and accumulator is incremented
elif i |> isPrime then prime1001 (i+2) i (accumulator+1)
//i is not prime, so number and accumulator do not change, just advance i to the next odd
else prime1001 (i+2) number accumulator
prime1001 1 1 0
是的,有更好的方法来做平方根:编写自己的通用平方根实现(G实现的参考this和this帖子):
///Finds the square root (integral or floating point) of n
///Does not work with BigRational
let inline sqrt_of (g:G<'a>) n =
if g.zero = n then g.zero
else
let mutable s:'a = (n / g.two) + g.one
let mutable t:'a = (s + (n / s)) / g.two
while t < s do
s <- t
let step1:'a = n/s
let step2:'a = s + step1
t <- step2 / g.two
s
let inline sqrtG n = sqrt_of (G_of n) n
let sqrtn = sqrt_of gn //this has suffix "n" because sqrt is not strictly integral type
let sqrtL = sqrt_of gL
let sqrtI = sqrt_of gI
let sqrtF = sqrt_of gF
let sqrtM = sqrt_of gM