我正在使用Apache OpenNLP,我想提取给定文本的关键短语。我已经收集了实体 - 但我希望有Keyphrases。
我遇到的问题是我不能使用TF-IDF,因为我没有模型,我只有一个文本(不是多个文件)
这是一些代码(原型 - 不那么干净)
public List<KeywordsModel> extractKeywords(String text, NLPProvider pipeline) {
SentenceDetectorME sentenceDetector = new SentenceDetectorME(pipeline.getSentencedetecto("en"));
TokenizerME tokenizer = new TokenizerME(pipeline.getTokenizer("en"));
POSTaggerME posTagger = new POSTaggerME(pipeline.getPosmodel("en"));
ChunkerME chunker = new ChunkerME(pipeline.getChunker("en"));
ArrayList<String> stopwords = pipeline.getStopwords("en");
Span[] sentSpans = sentenceDetector.sentPosDetect(text);
Map<String, Float> results = new LinkedHashMap<>();
SortedMap<String, Float> sortedData = new TreeMap(new MapSort.FloatValueComparer(results));
float sentenceCounter = sentSpans.length;
float prominenceVal = 0;
int sentences = sentSpans.length;
for (Span sentSpan : sentSpans) {
prominenceVal = sentenceCounter / sentences;
sentenceCounter--;
String sentence = sentSpan.getCoveredText(text).toString();
int start = sentSpan.getStart();
Span[] tokSpans = tokenizer.tokenizePos(sentence);
String[] tokens = new String[tokSpans.length];
for (int i = 0; i < tokens.length; i++) {
tokens[i] = tokSpans[i].getCoveredText(sentence).toString();
}
String[] tags = posTagger.tag(tokens);
Span[] chunks = chunker.chunkAsSpans(tokens, tags);
for (Span chunk : chunks) {
if ("NP".equals(chunk.getType())) {
int npstart = start + tokSpans[chunk.getStart()].getStart();
int npend = start + tokSpans[chunk.getEnd() - 1].getEnd();
String potentialKey = text.substring(npstart, npend);
if (!results.containsKey(potentialKey)) {
boolean hasStopWord = false;
String[] pKeys = potentialKey.split("\\s+");
if (pKeys.length < 3) {
for (String pKey : pKeys) {
for (String stopword : stopwords) {
if (pKey.toLowerCase().matches(stopword)) {
hasStopWord = true;
break;
}
}
if (hasStopWord == true) {
break;
}
}
}else{
hasStopWord=true;
}
if (hasStopWord == false) {
int count = StringUtils.countMatches(text, potentialKey);
results.put(potentialKey, (float) (Math.log(count) / 100) + (float)(prominenceVal/5));
}
}
}
}
}
sortedData.putAll(results);
System.out.println(sortedData);
return null;
}
它基本上做的是给我回名词并按突出值排序(文本中的哪个位置?)并计算。
但老实说 - 这不太好用。
我也尝试使用lucene分析仪,但结果也不太好。
那么 - 我怎样才能实现我想做的事情?我已经知道KEA / Maui-indexer等(但我担心因为GPL而无法使用它们:()
还有意思吗?我可以使用哪种其他算法代替TF-IDF?
示例:
此文字:http://techcrunch.com/2015/09/04/etsys-pulling-the-plug-on-grand-st-at-the-end-of-this-month/
我认为产量很高:Etsy,Grand St.,太阳能充电器,制造商市场,科技硬件