如何在cartopy / matplotlib图上显示km标尺?

时间:2015-09-01 14:11:59

标签: python matplotlib cartopy

如何为地图的放大部分显示公里标尺,无论是插入图像还是作为图表侧面的标尺?

E.g。类似于侧面(左侧)的50公里栏或mi(右侧)的插图:

(来源:12

(问题:cartopy#490

5 个答案:

答案 0 :(得分:9)

这里是我为自己编写的Cartopy比例尺功能,它使用了更简单的pp-mo的答案: 编辑:修改代码以创建一个居中的新投影,使得比例尺平行于许多坐标系的轴,包括一些正交和更大的地图,并且无需指定utm系统。 如果没有指定比例尺长度,还会添加代码来计算比例尺长度。

import cartopy.crs as ccrs
import numpy as np

def scale_bar(ax, length=None, location=(0.5, 0.05), linewidth=3):
    """
    ax is the axes to draw the scalebar on.
    length is the length of the scalebar in km.
    location is center of the scalebar in axis coordinates.
    (ie. 0.5 is the middle of the plot)
    linewidth is the thickness of the scalebar.
    """
    #Get the limits of the axis in lat long
    llx0, llx1, lly0, lly1 = ax.get_extent(ccrs.PlateCarree())
    #Make tmc horizontally centred on the middle of the map,
    #vertically at scale bar location
    sbllx = (llx1 + llx0) / 2
    sblly = lly0 + (lly1 - lly0) * location[1]
    tmc = ccrs.TransverseMercator(sbllx, sblly)
    #Get the extent of the plotted area in coordinates in metres
    x0, x1, y0, y1 = ax.get_extent(tmc)
    #Turn the specified scalebar location into coordinates in metres
    sbx = x0 + (x1 - x0) * location[0]
    sby = y0 + (y1 - y0) * location[1]

    #Calculate a scale bar length if none has been given
    #(Theres probably a more pythonic way of rounding the number but this works)
    if not length: 
        length = (x1 - x0) / 5000 #in km
        ndim = int(np.floor(np.log10(length))) #number of digits in number
        length = round(length, -ndim) #round to 1sf
        #Returns numbers starting with the list
        def scale_number(x):
            if str(x)[0] in ['1', '2', '5']: return int(x)        
            else: return scale_number(x - 10 ** ndim)
        length = scale_number(length) 

    #Generate the x coordinate for the ends of the scalebar
    bar_xs = [sbx - length * 500, sbx + length * 500]
    #Plot the scalebar
    ax.plot(bar_xs, [sby, sby], transform=tmc, color='k', linewidth=linewidth)
    #Plot the scalebar label
    ax.text(sbx, sby, str(length) + ' km', transform=tmc,
            horizontalalignment='center', verticalalignment='bottom')

它有一些限制,但相对简单,所以我希望你能看到如果你想要不同的东西如何改变它。

使用示例:

import matplotlib.pyplot as plt

ax = plt.axes(projection=ccrs.Mercator())
plt.title('Cyprus')
ax.set_extent([31, 35.5, 34, 36], ccrs.Geodetic())
ax.coastlines(resolution='10m')

scale_bar(ax, 100)

plt.show()

enter image description here

答案 1 :(得分:9)

通过在CartoPy 0.15中添加geodesic module,我们现在可以相当轻松地计算地图上的精确长度。想弄清楚如何在直线上的地图线上找到两个点是一个有点棘手的问题。一旦指定了地图上的方向,我就会执行指数搜索以找到足够远的点。然后我执行二分搜索以找到足够接近所需距离的点。

scale_bar功能很简单,但它有很多选项。基本签名是scale_bar(ax, location, length)ax是任何CartoPy轴,location是轴坐标中条形左侧的位置(因此每个坐标从0到1),length是长度以公里为单位的酒吧。支持其他长度,如metres_per_unitunit_name关键字参数。

额外的关键字参数(例如color)只会传递给textplot。但是,特定于textplot的关键字参数(例如familypath_effects)必须通过text_kwargsplot_kwargs作为字典传递。

我已经包含了我认为常见用例的示例。

请分享任何问题,评论或批评。

scalebar.py

import numpy as np
import cartopy.crs as ccrs
import cartopy.geodesic as cgeo


def _axes_to_lonlat(ax, coords):
    """(lon, lat) from axes coordinates."""
    display = ax.transAxes.transform(coords)
    data = ax.transData.inverted().transform(display)
    lonlat = ccrs.PlateCarree().transform_point(*data, ax.projection)

    return lonlat


def _upper_bound(start, direction, distance, dist_func):
    """A point farther than distance from start, in the given direction.

    It doesn't matter which coordinate system start is given in, as long
    as dist_func takes points in that coordinate system.

    Args:
        start:     Starting point for the line.
        direction  Nonzero (2, 1)-shaped array, a direction vector.
        distance:  Positive distance to go past.
        dist_func: A two-argument function which returns distance.

    Returns:
        Coordinates of a point (a (2, 1)-shaped NumPy array).
    """
    if distance <= 0:
        raise ValueError(f"Minimum distance is not positive: {distance}")

    if np.linalg.norm(direction) == 0:
        raise ValueError("Direction vector must not be zero.")

    # Exponential search until the distance between start and end is
    # greater than the given limit.
    length = 0.1
    end = start + length * direction

    while dist_func(start, end) < distance:
        length *= 2
        end = start + length * direction

    return end


def _distance_along_line(start, end, distance, dist_func, tol):
    """Point at a distance from start on the segment  from start to end.

    It doesn't matter which coordinate system start is given in, as long
    as dist_func takes points in that coordinate system.

    Args:
        start:     Starting point for the line.
        end:       Outer bound on point's location.
        distance:  Positive distance to travel.
        dist_func: Two-argument function which returns distance.
        tol:       Relative error in distance to allow.

    Returns:
        Coordinates of a point (a (2, 1)-shaped NumPy array).
    """
    initial_distance = dist_func(start, end)
    if initial_distance < distance:
        raise ValueError(f"End is closer to start ({initial_distance}) than "
                         f"given distance ({distance}).")

    if tol <= 0:
        raise ValueError(f"Tolerance is not positive: {tol}")

    # Binary search for a point at the given distance.
    left = start
    right = end

    while not np.isclose(dist_func(start, right), distance, rtol=tol):
        midpoint = (left + right) / 2

        # If midpoint is too close, search in second half.
        if dist_func(start, midpoint) < distance:
            left = midpoint
        # Otherwise the midpoint is too far, so search in first half.
        else:
            right = midpoint

    return right


def _point_along_line(ax, start, distance, angle=0, tol=0.01):
    """Point at a given distance from start at a given angle.

    Args:
        ax:       CartoPy axes.
        start:    Starting point for the line in axes coordinates.
        distance: Positive physical distance to travel.
        angle:    Anti-clockwise angle for the bar, in radians. Default: 0
        tol:      Relative error in distance to allow. Default: 0.01

    Returns:
        Coordinates of a point (a (2, 1)-shaped NumPy array).
    """
    # Direction vector of the line in axes coordinates.
    direction = np.array([np.cos(angle), np.sin(angle)])

    geodesic = cgeo.Geodesic()

    # Physical distance between points.
    def dist_func(a_axes, b_axes):
        a_phys = _axes_to_lonlat(ax, a_axes)
        b_phys = _axes_to_lonlat(ax, b_axes)

        # Geodesic().inverse returns a NumPy MemoryView like [[distance,
        # start azimuth, end azimuth]].
        return geodesic.inverse(a_phys, b_phys).base[0, 0]

    end = _upper_bound(start, direction, distance, dist_func)

    return _distance_along_line(start, end, distance, dist_func, tol)


def scale_bar(ax, location, length, metres_per_unit=1000, unit_name='km',
              tol=0.01, angle=0, color='black', linewidth=3, text_offset=0.005,
              ha='center', va='bottom', plot_kwargs=None, text_kwargs=None,
              **kwargs):
    """Add a scale bar to CartoPy axes.

    For angles between 0 and 90 the text and line may be plotted at
    slightly different angles for unknown reasons. To work around this,
    override the 'rotation' keyword argument with text_kwargs.

    Args:
        ax:              CartoPy axes.
        location:        Position of left-side of bar in axes coordinates.
        length:          Geodesic length of the scale bar.
        metres_per_unit: Number of metres in the given unit. Default: 1000
        unit_name:       Name of the given unit. Default: 'km'
        tol:             Allowed relative error in length of bar. Default: 0.01
        angle:           Anti-clockwise rotation of the bar.
        color:           Color of the bar and text. Default: 'black'
        linewidth:       Same argument as for plot.
        text_offset:     Perpendicular offset for text in axes coordinates.
                         Default: 0.005
        ha:              Horizontal alignment. Default: 'center'
        va:              Vertical alignment. Default: 'bottom'
        **plot_kwargs:   Keyword arguments for plot, overridden by **kwargs.
        **text_kwargs:   Keyword arguments for text, overridden by **kwargs.
        **kwargs:        Keyword arguments for both plot and text.
    """
    # Setup kwargs, update plot_kwargs and text_kwargs.
    if plot_kwargs is None:
        plot_kwargs = {}
    if text_kwargs is None:
        text_kwargs = {}

    plot_kwargs = {'linewidth': linewidth, 'color': color, **plot_kwargs,
                   **kwargs}
    text_kwargs = {'ha': ha, 'va': va, 'rotation': angle, 'color': color,
                   **text_kwargs, **kwargs}

    # Convert all units and types.
    location = np.asarray(location)  # For vector addition.
    length_metres = length * metres_per_unit
    angle_rad = angle * np.pi / 180

    # End-point of bar.
    end = _point_along_line(ax, location, length_metres, angle=angle_rad,
                            tol=tol)

    # Coordinates are currently in axes coordinates, so use transAxes to
    # put into data coordinates. *zip(a, b) produces a list of x-coords,
    # then a list of y-coords.
    ax.plot(*zip(location, end), transform=ax.transAxes, **plot_kwargs)

    # Push text away from bar in the perpendicular direction.
    midpoint = (location + end) / 2
    offset = text_offset * np.array([-np.sin(angle_rad), np.cos(angle_rad)])
    text_location = midpoint + offset

    # 'rotation' keyword argument is in text_kwargs.
    ax.text(*text_location, f"{length} {unit_name}", rotation_mode='anchor',
            transform=ax.transAxes, **text_kwargs)

demo.py

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
from scalebar import scale_bar

fig = plt.figure(1, figsize=(10, 10))
ax = fig.add_subplot(111, projection=ccrs.Mercator())
ax.set_extent([-180, 180, -85, 85])
ax.coastlines(facecolor='black')
ax.add_feature(cfeature.LAND)

# Standard 6,000 km scale bar.
scale_bar(ax, (0.65, 0.4), 6_000)

# Length of the bar reflects its position on the map.
scale_bar(ax, (0.55, 0.7), 6_000, color='green')

# Bar can be placed at any angle. Any units can be used.
scale_bar(ax, (0.4, 0.4), 3_000, metres_per_unit=1609, angle=-90,
          unit_name='mi', color='red')
# Text and line can be styled separately. Keywords are simply passed to
# text or plot.
text_kwargs = dict(family='serif', size='xx-large', color='red')
plot_kwargs = dict(linestyle='dashed', color='blue')
scale_bar(ax, (0.05, 0.3), 6_000, text_kwargs=text_kwargs,
          plot_kwargs=plot_kwargs)

# Angles between 0 and 90 may result in the text and line plotted at
# slightly different angles for an unknown reason.
scale_bar(ax, (0.45, 0.15), 5_000, color='purple', angle=45, text_offset=0)

# To get around this override the text's angle and fiddle manually.
scale_bar(ax, (0.55, 0.15), 5_000, color='orange', angle=45, text_offset=0,
          text_kwargs={'rotation': 41})

plt.show()

Several different scale bars on one world map.

答案 2 :(得分:4)

以下是@ Siyh的答案的精炼版本,其中补充说:

  • 自动UTM区域选择
  • 文本/栏后面的缓冲区,以便在后台显示
  • 一个北箭头

注意:

  • 如果你没有为你的轴使用UTM,则该栏将被绘制为弯曲
  • 北箭向北假设

代码:

import os
import cartopy.crs as ccrs
from math import floor
import matplotlib.pyplot as plt
from matplotlib import patheffects
import matplotlib
if os.name == 'nt':
    matplotlib.rc('font', family='Arial')
else:  # might need tweaking, must support black triangle for N arrow
    matplotlib.rc('font', family='DejaVu Sans')


def utm_from_lon(lon):
    """
    utm_from_lon - UTM zone for a longitude

    Not right for some polar regions (Norway, Svalbard, Antartica)

    :param float lon: longitude
    :return: UTM zone number
    :rtype: int
    """
    return floor( ( lon + 180 ) / 6) + 1

def scale_bar(ax, proj, length, location=(0.5, 0.05), linewidth=3,
              units='km', m_per_unit=1000):
    """

    http://stackoverflow.com/a/35705477/1072212
    ax is the axes to draw the scalebar on.
    proj is the projection the axes are in
    location is center of the scalebar in axis coordinates ie. 0.5 is the middle of the plot
    length is the length of the scalebar in km.
    linewidth is the thickness of the scalebar.
    units is the name of the unit
    m_per_unit is the number of meters in a unit
    """
    # find lat/lon center to find best UTM zone
    x0, x1, y0, y1 = ax.get_extent(proj.as_geodetic())
    # Projection in metres
    utm = ccrs.UTM(utm_from_lon((x0+x1)/2))
    # Get the extent of the plotted area in coordinates in metres
    x0, x1, y0, y1 = ax.get_extent(utm)
    # Turn the specified scalebar location into coordinates in metres
    sbcx, sbcy = x0 + (x1 - x0) * location[0], y0 + (y1 - y0) * location[1]
    # Generate the x coordinate for the ends of the scalebar
    bar_xs = [sbcx - length * m_per_unit/2, sbcx + length * m_per_unit/2]
    # buffer for scalebar
    buffer = [patheffects.withStroke(linewidth=5, foreground="w")]
    # Plot the scalebar with buffer
    ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k',
        linewidth=linewidth, path_effects=buffer)
    # buffer for text
    buffer = [patheffects.withStroke(linewidth=3, foreground="w")]
    # Plot the scalebar label
    t0 = ax.text(sbcx, sbcy, str(length) + ' ' + units, transform=utm,
        horizontalalignment='center', verticalalignment='bottom',
        path_effects=buffer, zorder=2)
    left = x0+(x1-x0)*0.05
    # Plot the N arrow
    t1 = ax.text(left, sbcy, u'\u25B2\nN', transform=utm,
        horizontalalignment='center', verticalalignment='bottom',
        path_effects=buffer, zorder=2)
    # Plot the scalebar without buffer, in case covered by text buffer
    ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k',
        linewidth=linewidth, zorder=3)

if __name__ == '__main__':

    ax = plt.axes(projection=ccrs.Mercator())
    plt.title('Cyprus')
    ax.set_extent([31, 35.5, 34, 36], ccrs.Geodetic())
    ax.stock_img()
    ax.coastlines(resolution='10m')

    scale_bar(ax, ccrs.Mercator(), 100)  # 100 km scale bar
    # or to use m instead of km
    # scale_bar(ax, ccrs.Mercator(), 100000, m_per_unit=1, units='m')
    # or to use miles instead of km
    # scale_bar(ax, ccrs.Mercator(), 60, m_per_unit=1609.34, units='miles')

    plt.show()

Demo image, map of Cyprus with scalebar

答案 3 :(得分:1)

我认为没有简单的盆栽解决方案可供选择:您必须使用图形元素自行绘制。

在很久以前,我写了一些自适应代码,将比例尺添加到任意比例的OS网格图中 我认为不是你想要的,但它显示了必要的技术:

def add_osgb_scalebar(ax, at_x=(0.1, 0.4), at_y=(0.05, 0.075), max_stripes=5):
    """
    Add a scalebar to a GeoAxes of type cartopy.crs.OSGB (only).

    Args:
    * at_x : (float, float)
        target axes X coordinates (0..1) of box (= left, right)
    * at_y : (float, float)
        axes Y coordinates (0..1) of box (= lower, upper)
    * max_stripes
        typical/maximum number of black+white regions
    """
    # ensure axis is an OSGB map (meaning coords are just metres)
    assert isinstance(ax.projection, ccrs.OSGB)
    # fetch axes coordinate mins+maxes
    x0, x1 = ax.get_xlim()
    y0, y1 = ax.get_ylim()
    # set target rectangle in-visible-area (aka 'Axes') coordinates
    ax0, ax1 = at_x
    ay0, ay1 = at_y
    # choose exact X points as sensible grid ticks with Axis 'ticker' helper
    x_targets = [x0 + ax * (x1 - x0) for ax in (ax0, ax1)]
    ll = mpl.ticker.MaxNLocator(nbins=max_stripes, steps=[1,2,4,5,10])
    x_vals = ll.tick_values(*x_targets)
    # grab min+max for limits
    xl0, xl1 = x_vals[0], x_vals[-1]
    # calculate Axes Y coordinates of box top+bottom
    yl0, yl1 = [y0 + ay * (y1 - y0) for ay in [ay0, ay1]]
    # calculate Axes Y distance of ticks + label margins
    y_margin = (yl1-yl0)*0.25

    # fill black/white 'stripes' and draw their boundaries
    fill_colors = ['black', 'white']
    i_color = 0
    for xi0, xi1 in zip(x_vals[:-1],x_vals[1:]):
        # fill region
        plt.fill((xi0, xi1, xi1, xi0, xi0), (yl0, yl0, yl1, yl1, yl0),
                 fill_colors[i_color])
        # draw boundary
        plt.plot((xi0, xi1, xi1, xi0, xi0), (yl0, yl0, yl1, yl1, yl0),
                 'black')
        i_color = 1 - i_color

    # add short tick lines
    for x in x_vals:
        plt.plot((x, x), (yl0, yl0-y_margin), 'black')

    # add a scale legend 'Km'
    font_props = mfonts.FontProperties(size='medium', weight='bold')
    plt.text(
        0.5 * (xl0 + xl1),
        yl1 + y_margin,
        'Km',
        verticalalignment='bottom',
        horizontalalignment='center',
        fontproperties=font_props)

    # add numeric labels
    for x in x_vals:
        plt.text(x,
                 yl0 - 2 * y_margin,
                 '{:g}'.format((x - xl0) * 0.001),
                 verticalalignment='top',
                 horizontalalignment='center',
                 fontproperties=font_props)

凌乱,不是吗?
您认为可能可以为此添加某种“浮动Axis对象”,以提供自动重新缩放图形,但我无法找到一种方法(我想我还是不能。)

HTH

答案 4 :(得分:0)

基于上面提供的先前示例,并且根据here,我开发了一种使用cartopy绘制比例尺的方法。

该方法已通过cartopy.crs.PlateCarree()投影进行了验证。但是,该算法对于其他投影无法正常工作。

这里是一个例子:


# importing main libraries

import cartopy
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import matplotlib.pyplot as plt
import numpy as np

from matplotlib import font_manager as mfonts
import matplotlib.ticker as mticker
import matplotlib.patches as patches
import geopandas as gpd

import pandas as pd



def get_standard_gdf():
    """ basic function for getting some geographical data in geopandas GeoDataFrame python's instance:
        An example data can be downloaded from Brazilian IBGE:
        ref: ftp://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2017/Brasil/BR/br_municipios.zip    
    """
    gdf_path = r'C:\path_to_shp\shapefile.shp'

    return gpd.read_file(gdf_path)


----------
# defining functions for scalebar


def _crs_coord_project(crs_target, xcoords, ycoords, crs_source):
    """ metric coordinates (x, y) from cartopy.crs_source"""
    
    axes_coords = crs_target.transform_points(crs_source, xcoords, ycoords)
    
    return axes_coords


def _add_bbox(ax, list_of_patches, paddings={}, bbox_kwargs={}):
    
    '''
    Description:
        This helper function adds a box behind the scalebar:
            Code inspired by: https://stackoverflow.com/questions/17086847/box-around-text-in-matplotlib
    
    
    '''
    
    zorder = list_of_patches[0].get_zorder() - 1
    
    xmin = min([t.get_window_extent().xmin for t in list_of_patches])
    xmax = max([t.get_window_extent().xmax for t in list_of_patches])
    ymin = min([t.get_window_extent().ymin for t in list_of_patches])
    ymax = max([t.get_window_extent().ymax for t in list_of_patches])
    

    xmin, ymin = ax.transData.inverted().transform((xmin, ymin))
    xmax, ymax = ax.transData.inverted().transform((xmax, ymax))

    
    xmin = xmin - ( (xmax-xmin) * paddings['xmin'])
    ymin = ymin - ( (ymax-ymin) * paddings['ymin'])
    
    xmax = xmax + ( (xmax-xmin) * paddings['xmax'])
    ymax = ymax + ( (ymax-ymin) * paddings['ymax'])
    
    width = (xmax-xmin)
    height = (ymax-ymin)
    
    # Setting xmin according to height
    
    
    rect = patches.Rectangle((xmin,ymin),
                              width,
                              height, 
                              facecolor=bbox_kwargs['facecolor'], 
                              edgecolor =bbox_kwargs['edgecolor'],
                              alpha=bbox_kwargs['alpha'], 
                              transform=ax.projection,
                              fill=True,
                              clip_on=False,
                              zorder=zorder)

    ax.add_patch(rect)
    return ax



def add_scalebar(ax, metric_distance=100, 
                 at_x=(0.1, 0.4), 
                 at_y=(0.05, 0.075), 
                 max_stripes=5,
                 ytick_label_margins = 0.25,
                 fontsize= 8,
                 font_weight='bold',
                 rotation = 45,
                 zorder=999,
                 paddings = {'xmin':0.3,
                             'xmax':0.3,
                             'ymin':0.3,
                             'ymax':0.3},
    
                 bbox_kwargs = {'facecolor':'w',
                                'edgecolor':'k',
                                'alpha':0.7}
                ):
    """
    Add a scalebar to a GeoAxes of type cartopy.crs.OSGB (only).

    Args:
    * at_x : (float, float)
        target axes X coordinates (0..1) of box (= left, right)
    * at_y : (float, float)
        axes Y coordinates (0..1) of box (= lower, upper)
    * max_stripes
        typical/maximum number of black+white regions
    """
    old_proj = ax.projection
    ax.projection = ccrs.PlateCarree()
    # Set a planar (metric) projection for the centroid of a given axes projection:
    # First get centroid lon and lat coordinates:
    
    lon_0, lon_1, lat_0, lat_1 = ax.get_extent(ax.projection.as_geodetic())
    
    central_lon = np.mean([lon_0, lon_1])
    central_lat = np.mean([lat_0, lat_1])
    
    # Second: set the planar (metric) projection centered in the centroid of the axes;
        # Centroid coordinates must be in lon/lat.
    proj=ccrs.EquidistantConic(central_longitude=central_lon, central_latitude=central_lat)
    
    # fetch axes coordinates in meters
    x0, x1, y0, y1 = ax.get_extent(proj)
    ymean = np.mean([y0, y1])
    
    # set target rectangle in-visible-area (aka 'Axes') coordinates
    axfrac_ini, axfrac_final = at_x
    ayfrac_ini, ayfrac_final = at_y
    
    # choose exact X points as sensible grid ticks with Axis 'ticker' helper
    xcoords = []
    ycoords = []
    xlabels = []
    for i in range(0 , 1+ max_stripes):
        dx = (metric_distance * i) + x0
        xlabels.append(dx - x0)
        
        xcoords.append(dx)
        ycoords.append(ymean)
    
    # Convertin to arrays:

    xcoords = np.asanyarray(xcoords)
    ycoords = np.asanyarray(ycoords)
    
    # Ensuring that the coordinate projection is in degrees:

    x_targets, y_targets, z_targets = _crs_coord_project(ax.projection, xcoords, ycoords, proj).T
    x_targets = [x + (axfrac_ini * (lon_1 - lon_0)) for x in  x_targets]


    
    # Checking x_ticks in axes projection coordinates
    #print('x_targets', x_targets)
    
    
    #Setting transform for plotting
    
    
    transform = ax.projection
    
    
    
    # grab min+max for limits
    xl0, xl1 = x_targets[0], x_targets[-1]
    
    
    # calculate Axes Y coordinates of box top+bottom
    yl0, yl1 = [lat_0 + ay_frac * (lat_1 - lat_0) for ay_frac in [ayfrac_ini, ayfrac_final]]

    
    # calculate Axes Y distance of ticks + label margins
    y_margin = (yl1-yl0)*ytick_label_margins
    
    
    
    # fill black/white 'stripes' and draw their boundaries
    fill_colors = ['black', 'white']
    i_color = 0
    
    filled_boxs = []
    for xi0, xi1 in zip(x_targets[:-1],x_targets[1:]):
        # fill region
        filled_box = plt.fill(
                              (xi0, xi1, xi1, xi0, xi0), 
                              (yl0, yl0, yl1, yl1, yl0),
                 
                              fill_colors[i_color],
                              transform=transform,
                              clip_on=False,
                              zorder=zorder
                            )
        
        filled_boxs.append(filled_box[0])
        
        # draw boundary
        plt.plot((xi0, xi1, xi1, xi0, xi0), 
                 (yl0, yl0, yl1, yl1, yl0),
                 'black',
                 clip_on=False,
                transform=transform,
                zorder=zorder)
        
        i_color = 1 - i_color
    
    # adding boxes
    
    
    _add_bbox(ax, 
             filled_boxs,
             bbox_kwargs = bbox_kwargs ,
             paddings =paddings)
    
    
    
    # add short tick lines
    for x in x_targets:
        plt.plot((x, x), (yl0, yl0-y_margin), 'black', 
                 transform=transform,
                 zorder=zorder,
                 clip_on=False)
    
    
    
    # add a scale legend 'Km'
    font_props = mfonts.FontProperties(size=fontsize, 
                                       weight=font_weight)
    
    plt.text(
        0.5 * (xl0 + xl1),
        yl1 + y_margin,
        'Km',
        color='k',
        verticalalignment='bottom',
        horizontalalignment='center',
        fontproperties=font_props,
        transform=transform,
        clip_on=False,
        zorder=zorder)

    # add numeric labels
    for x, xlabel in zip(x_targets, xlabels):
        print('Label set in: ', x, yl0 - 2 * y_margin)
        plt.text(x,
                 yl0 - 2 * y_margin,
                 '{:g}'.format((xlabel) * 0.001),
                 verticalalignment='top',
                 horizontalalignment='center',
                 fontproperties=font_props,
                 transform=transform,
                 rotation=rotation,
                 clip_on=False,
                 zorder=zorder+1,
                #bbox=dict(facecolor='red', alpha=0.5) # this would add a box only around the xticks
                )
    
    
    # Adjusting figure borders to ensure that the scalebar is within its limits
    ax.projection = old_proj
    ax.get_figure().canvas.draw()
    fig.tight_layout() 


----------

定义一些帮助功能,以设置轴的样式(绘图)

def format_ax(ax, projection):

    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    ax.set_global()
    ax.coastlines()
    
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
    
    
def add_grider(ax, nticks=5):
    
    
    if isinstance(ax.projection, ccrs.PlateCarree):
        



        Grider = ax.gridlines(draw_labels=True)
        Grider.xformatter = LONGITUDE_FORMATTER
        Grider.yformatter = LATITUDE_FORMATTER
        Grider.xlabels_top  = False
        Grider.ylabels_right  = False

        Grider.xlocator = mticker.MaxNLocator(nticks)
        Grider.ylocator = mticker.MaxNLocator(nticks)
        
    
    else:
        xmin, xmax, ymin, ymax = ax.get_extent()

        ax.set_xticks(np.arange(xmin, xmax, nticks))

        ax.set_yticks(np.arange(ymin, ymax, nticks))
        ax.grid(True)

----------
# Defining a main helper function for plotting:



def main(projection = ccrs.PlateCarree(central_longitude=0),
        nticks=4):
    
    
    fig, ax1 = plt.subplots( figsize=(8, 10), subplot_kw={'projection':projection})

    # Label axes of a Plate Carree projection with a central longitude of 180:
    
    #for enum, proj in enumerate(['Mercator, PlateCarree']):
    
    gdf = get_standard_gdf()
    

    if gdf.crs.is_projected:
        epsg = gdf.crs.to_epsg()

        crs_epsg = ccrs.epsg(epsg)

    else:
        crs_epsg = ccrs.PlateCarree()


    gdf.plot(ax=ax1, transform=projection)
    
    
    format_ax(ax1, projection)
    
    
    add_grider(ax1, nticks)
    

    ax1.set_title('Projection {0}'.format(ax1.projection.__class__.__name__))
    plt.draw()
    return fig, fig.get_axes()


----------
# Example of the case



length = 1000

fig, axes = main(ccrs.PlateCarree())

for ax in axes:

    add_scalebar(ax, 
                 metric_distance=200_000  , 
                 at_x=(1.1, 1.3), 
                 at_y=(0.08, 0.11), 
                 max_stripes=4,
                 paddings = {'xmin':0.1,
                            'xmax':0.1,
                            'ymin':2.8,
                            'ymax':0.5},
                 fontsize=9,
                 font_weight='bold',
                 bbox_kwargs = {'facecolor':'w',
                                'edgecolor':'k',
                               'alpha':0.7})

fig.show()

这是同一地区(帕拉州-巴西)的两个图形,在“ add_scalebar”函数中具有不同的设置。图1正是从上述设置得出的。图2使用了一个变体:

add_scalebar(ax, 
                 metric_distance=200_000  , 
                 at_x=(0.55, 0.3), 
                 at_y=(0.08, 0.11), 
                 max_stripes=4,
                 paddings = {'xmin':0.05,
                            'xmax':0.05,
                            'ymin':2.2,
                            'ymax':0.5},
                 fontsize=7,
                 font_weight='bold',
                 bbox_kwargs = {'facecolor':'w',
                                'edgecolor':'k',
                               'alpha':0.7})

Fig 1

Fig 2


唯一的问题是,此提议的解决方案仍需要扩展到其他Cartopy投影(在PlateCarree旁边)。